Answer:
The value of final volume inside the vessel [tex]V_{2}[/tex] = 5.17 ml
Explanation:
Initial pressure [tex]P_{1}[/tex] = 6263 mm Hg = 8.24 atm = 835 K pa
Initial temperature [tex]T_{1}[/tex] = 50.1 ° c = 323.1 K
Initial volume [tex]V_{1}[/tex] = 461.1 ml = 0.0004611 [tex]m^{3}[/tex]
Final temperature [tex]T_{2}[/tex] = - 95.8 ° c = 177.2 K
Finial pressure [tex]P_{2}[/tex] = 411 atm = 41644.6 K PA
We know that
[tex]P_{1} \frac{V_{1} }{T_{1} } = P_{2} \frac{V_{2} }{T_{2} }[/tex]
Put all the values in the above equation
⇒ 835 × [tex]\frac{0.0004611}{323.1}[/tex] = 41644.6 × [tex]\frac{V_{2} }{177.2}[/tex]
⇒ [tex]V_{2}[/tex] = 5.07 × [tex]10^{-6}[/tex] [tex]m^{3}[/tex]
⇒ [tex]V_{2}[/tex] = 5.17 ml
This is the value of final volume inside the vessel.