An electron is accelerated from rest by a potential difference of (24.5 A) V for a distance of (4.50 B) cm. Determine the de Broglie wavelength of the electron. Give your answer in picometers (pm) and with 3 significant figures.

Respuesta :

Answer:

206 pm

Explanation:

We are given that

Potential difference,[tex]\Delta V=24.5+A V[/tex]

Distance,d=[tex]4.5+B cm[/tex]

We have to determine the de Brogile wavelength of the electron.

A=11 and B=5

[tex]\Delta V=24.5+11=35.5 V[/tex]

[tex]d=4.5+5=9.5 cm[/tex]

Charge on electron,q =[tex]1.6\times 10^{-19} C[/tex]

Mass of electron=m=[tex]9.1\times 10^{-31} kg[/tex]

Speed of electron,[tex]v=\sqrt{\frac{2q\Delta V}{m}}[/tex]

Using the formula

[tex]v=\sqrt{\frac{2\times 1.6\times 10^{-19}\times 35.5}{9.1\times 10^{-31}}[/tex]

v=[tex]3.53\times 10^6 m/s[/tex]

de Brogile wavelength, [tex]\lambda=\frac{h}{mv}[/tex]

Where [tex]h=6.626\times 10^{-34}[/tex]

[tex]\lambda=\frac{6.626\times 10^{-34}}{9.1\times 10^{-31}\times 3.53\times 10^6}=2.06\times 10^{-10}=206\times 10^{-12} m[/tex]

1 pm=[tex]10^{-12} m[/tex]

[tex]\lambda=206 pm[/tex]

Given question is incomplete. The complete question is as follows.

An electron is accelerated from rest by a potential difference of (24.5 + A) V for a distance of (4.50 + B) cm. Determine the de Broglie wavelength of the electron. Give your answer in picometers (pm) and with 3 significant figures.

A = 11

B = 5

Explanation:

Change in potential difference will be as follows.

     [tex]\Delta V[/tex] = (24.5 + A) volts

By putting the value of A we will calculate [tex]\Delta V[/tex] as follows.

      [tex]\Delta V[/tex] = (24.5 + A) volts

                     = (24.5 + 11) volts    

                     = 35.51 volts

and,    d = (4.50 + B) cm

             = (4.50 + 5) cm

             = 9.50 cm  

Now,   kinetic energy = [tex]q \times \Delta V[/tex]

            [tex]\frac{1}{2}mv^{2} = 35.5 \times 1.6 \times 10^{-19}[/tex]

  [tex]\frac{1}{2} \times 9.1 \times 10^{-31} \times v^{2} = 5.68 \times 10^{-18} J[/tex]

                v = 3533202.016 m/s

Also we know that,

       [tex]\lambda = \frac{r}{mv}[/tex]

                   = [tex]\frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 3533202.016 m/s}[/tex]    

                   = [tex]206.2 \times 10^{-12}[/tex]

or,                = 206.2 pm

Thus, we can conclude that the de Broglie wavelength of the electron is 206.2 pm.

ACCESS MORE
EDU ACCESS
Universidad de Mexico