Consider the differential equation y'' − y' − 20y = 0. Verify that the functions e−4x and e5x form a fundamental set of solutions of the differential equation on the interval (−[infinity], [infinity]).The functions satisfy the differential equation and are linearly independent since the Wronskian W e−4x, e5x =__________ ≠ 0 for −[infinity] < x < [infinity].Form the general solution.y =____________

Respuesta :

Answer:

Therefore [tex]e^{-4x}[/tex] and [tex]e^{5x}[/tex] are fundamental solution of the given differential equation.

Therefore  [tex]e^{-4x}[/tex] and [tex]e^{5x}[/tex] are linearly independent, since [tex]W(e^{-4x},e^{5x})=9e^x\neq 0[/tex]

The general solution of the differential equation is

[tex]y=c_1e^{-4x}+c_2e^{5x}[/tex]

Step-by-step explanation:

Given differential equation is

y''-y'-20y =0

Here P(x)= -1, Q(x)= -20 and R(x)=0

Let trial solution be [tex]y=e^{mx}[/tex]

Then, [tex]y'=me^{mx}[/tex]   and   [tex]y''=m^2e^{mx}[/tex]

[tex]\therefore m^2e^{mx}-m e^{mx}-20e^{mx}=0[/tex]

[tex]\Rightarrow m^2-m-20=0[/tex]

[tex]\Rightarrow m^2-5m+4m-20=0[/tex]

[tex]\Rightarrow m(m-5)+4(m-5)=0[/tex]

[tex]\Rightarrow (m-5)(m+4)=0[/tex]

[tex]\Rightarrow m=-4,5[/tex]

Therefore the complementary function is = [tex]c_1e^{-4x}+c_2e^{5x}[/tex]

Therefore [tex]e^{-4x}[/tex] and [tex]e^{5x}[/tex] are fundamental solution of the given differential equation.

If [tex]y_1[/tex] and [tex]y_2[/tex] are the fundamental solution of differential equation, then

[tex]W(y_1,y_2)=\left|\begin{array}{cc}y_1&y_2\\y'_1&y'_2\end{array}\right|\neq 0[/tex]

Then  [tex]y_1[/tex] and [tex]y_2[/tex] are linearly independent.

[tex]W(e^{-4x},e^{5x})=\left|\begin{array}{cc}e^{-4x}&e^{5x}\\-4e^{-4x}&5e^{5x}\end{array}\right|[/tex]

                    [tex]=e^{-4x}.5e^{5x}-e^{5x}.(-4e^{-4x})[/tex]

                    [tex]=5e^x+4e^x[/tex]

                   [tex]=9e^x\neq 0[/tex]

Therefore  [tex]e^{-4x}[/tex] and [tex]e^{5x}[/tex] are linearly independent, since [tex]W(e^{-4x},e^{5x})=9e^x\neq 0[/tex]

Let the the particular solution of the differential equation is

[tex]y_p=v_1e^{-4x}+v_2e^{5x}[/tex]

[tex]\therefore v_1=\int \frac{-y_2R(x)}{W(y_1,y_2)} dx[/tex]

and

[tex]\therefore v_2=\int \frac{y_1R(x)}{W(y_1,y_2)} dx[/tex]

Here [tex]y_1= e^{-4x}[/tex], [tex]y_2=e^{5x}[/tex],[tex]W(e^{-4x},e^{5x})=9e^x[/tex] ,and  [tex]R(x)=0[/tex]

[tex]\therefore v_1=\int \frac{-e^{5x}.0}{9e^x}dx[/tex]

       =0

and

[tex]\therefore v_2=\int \frac{e^{5x}.0}{9e^x}dx[/tex]

       =0

The the P.I = 0

The general solution of the differential equation is

[tex]y=c_1e^{-4x}+c_2e^{5x}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico