Respuesta :
Answer:
a) the distance up to which the object compress the spring is x = 0.378m
b),the distance up to which the object compress the spring is x= 0.359
Explanation:
Given that,
Mass , m = 1.6kg
spring at vertical height ,h = 1.05m
Spring constant ,k = 315 N/m
Air resistance force = 0.750N
Let assume that the lowest point is the origin
Therefore, initial displacement is
[tex]y_i = 1.05 + x[/tex]
And final displacement is
[tex]y_f = 0[/tex]
Apply the conservation of energy
[tex]\frac{mv_i^2}{2} +\frac{kx_i^2}{2} +mgy_i=\frac{mv_f^2}{2} +\frac{kx^2}{2} +mgy_f[/tex]
[tex]\frac{m(0)^2}{2} +\frac{k(0)^2}{2} +mg(1.05+x)=\frac{m(0)^2}{2} +\frac{kx^2}{2} +mg(0)[/tex]
[tex](1.60)(9.81)(1.05 + x)^2=\frac{(315)}{2} x^2\\\\16.4808+15.969x=157.5x^2[/tex]
[tex]x^2-0.1014x-0.1046=0[/tex]
solve the equation using quadratic equation
[tex]x = \frac{-(-0.1014\pm \sqrt{(-0.1014)^2-4(1)(-1046)} )}{2}[/tex]
[tex]x = \frac{0.1014\pm\sqrt{0.42868} }{2} \\\\x = \frac{0.1014\pm0.6547}{2} \\\\x = \frac{0.1014+0.6547}{2} or \frac{0.1014-0.6547}{2} \\\\x = 0.3781 or -0.2767[/tex]
Take the positive value
Hence , the distance up to which the object compress the spring is x = 0.378m
b)If the air resistance is taken into cosideration
therefore apply conservation of energy
mg(1.05 + x) - fd = kx²/2
mg(1.05 +x) - (0.750N) (1.05 + x) = kx²/2
((1.60× 9.81) - 0.750)(1.05 + x) = (315/2)x²
14.946 (1.05 + x) = 157.5x²
15.6933 + 14.946x = 157.5x²
x² - 0.0949x - 0.00996
solve the equation using quadratic equation
x = 0.359 or -0.264
Hence ,the distance up to which the object compress the spring is x= 0.359
