Respuesta :
Answer:
[tex]v_{B0}=15.73 m/s[/tex]
Explanation:
We can use the conservation of momentum. The initial momentum is equal to the final momentum:
x-coordinate
[tex]p_{0x}=p_{fx}[/tex]
[tex]m_{A}v_{A0}=(m_{A}+m_{B})v_{cx}[/tex]
[tex]m_{A}v_{A0}=(m_{A}+m_{B})v_{c}cos(40)[/tex] (1)
y-coordinate
[tex]p_{0y}=p_{fy}[/tex]
[tex]m_{B}v_{B0}=(m_{A}+m_{B})v_{cy}[/tex]
[tex]m_{B}v_{B0}=(m_{A}+m_{B})v_{c}sin(40)[/tex] (2)
We can divide equations (2) and (1):
[tex]\frac{m_{B}v_{B0}}{m_{A}v_{A0}}=\frac{sin(40)}{cos(40)}[/tex]
[tex]\frac{m_{B}v_{B0}}{m_{A}v_{A0}}=tan(40)[/tex]
[tex]v_{B0}=\frac{m_{A}v_{A0}}{m_{B}}*tan(40)[/tex]
[tex]v_{B0}=\frac{1200*25}{1600}*tan(40)[/tex]
[tex]v_{B0}=15.73 m/s[/tex]
I hope it helps you!
Answer:
The speed of car b before collision is 15.72 m/s
Explanation:
Given that,
Mass of car a= 1200 kg
Speed = 25 m/s
Mass of car b = 1600 kg
moving in a direction making an angle of 40°
We need to calculate the speed of car b before the collision
Using conservation of momentum
Horizontal momentum,
[tex]P_{i}=P_{f}m_{1}v_{1}=(m_{1}+m_{2})\times v\cos\theta[/tex]
substitute the value into the formula
[tex]1200\times25=(1200+1600)v\times\cos40v=\dfrac{1200\times25}{2800\times\cos40}v=13.98\ m/s[/tex]
Vertical momentum,
[tex]P_{i}=P_{f}m_{2}v_{2}=(m_{1}+m_{2})\times v\sin\theta[/tex]
substitute the value into the formula
[tex]1600\times v=(1200+1600)\times13.98\times\sin40\\v_{2}=\dfrac{2800\times13.98\sin40}{1600}\\v_{2}=15.72\ m/s[/tex]
Thus, The speed of car b before collision is 15.72 m/s
