Answer:
The standard change in Gibbs free energy of this reaction at 25 ∘ C = 8.77 KJ/mol
Explanation:
3 A ( g ) + 4 B ( g ) ⇄ 2 C ( g ) + 3 D ( g ) -------(1)
Given
partial pressures (P A) = 4.47 atm, P B = 5.17 atm, P C = 4.08 atm, and P D = 4.83 atm.
From the above equation we can write
[tex]K_{p} =\frac{P_{C} ^{2} XP_{D} ^{3}}{P_{A} ^{3}XP_{B} ^{4}}[/tex]
⇒ [tex]K_{p} = \frac{(4.08)^{2}(4.83)^{3} }{(4.47)^{3}(5.17)^{4} }[/tex]
⇒ [tex]K_{p} = \frac{16.64X112.6}{89.31X714.4}[/tex]
⇒ [tex]K_{p}= 0.029[/tex]
From equation (1)
standard change in Gibbs free energy (ΔG°) = -RTlnKp
= - 0.0821 x 298 x ln(0.029)
= + 86.6 lit. atm / mole
∵ 1 lit.atm = 101.3 joule/mole
So, + 86.6 lit. atm or 86.6 x 101.3 = 8772.58 joule/mole = 8.77 KJ/mol