Answer : The moles of methane gas could be, [tex]7.90\times 10^{-3}mol[/tex]
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.
[tex]R\propto \sqrt{\frac{1}{M}}[/tex]
or,
[tex](\frac{R_1}{R_2})=\sqrt{\frac{M_2}{M_1}}[/tex]
[tex][\frac{(\frac{n_1}{t_1})}{(\frac{n_2}{t_2})}]=\sqrt{\frac{M_2}{M_1}}[/tex]
where,
[tex]R_1[/tex] = rate of effusion of fluorine gas
[tex]R_2[/tex] = rate of effusion of methane gas
[tex]n_1[/tex] = moles of fluorine gas = [tex]5.13\times 10^{-3}mol[/tex]
[tex]n_2[/tex] = moles of methane gas = ?
[tex]t_1=t_2[/tex] = time = 12.3 min (as per question)
[tex]M_1[/tex] = molar mass of fluorine gas = 38 g/mole
[tex]M_2[/tex] = molar mass of methane gas = 16 g/mole
Now put all the given values in the above formula 1, we get:
[tex][\frac{(\frac{5.13\times 10^{-3}mol}{12.3min})}{(\frac{n_2}{12.3min})}]=\sqrt{\frac{16g/mole}{38g/mole}}[/tex]
[tex]n_2=7.90\times 10^{-3}mol[/tex]
Therefore, the moles of methane gas could be, [tex]7.90\times 10^{-3}mol[/tex]