over a 12.3 minuete period 5.13 E-3 moles of F2 gas effuses from a contaier. How many moles of CH4 gas could effuse from from the same container in the same period of time under the same conditions

Respuesta :

Answer : The moles of methane gas could be, [tex]7.90\times 10^{-3}mol[/tex]

Solution :

According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.

[tex]R\propto \sqrt{\frac{1}{M}}[/tex]

or,

[tex](\frac{R_1}{R_2})=\sqrt{\frac{M_2}{M_1}}[/tex]

[tex][\frac{(\frac{n_1}{t_1})}{(\frac{n_2}{t_2})}]=\sqrt{\frac{M_2}{M_1}}[/tex]

where,

[tex]R_1[/tex] = rate of effusion of fluorine gas

[tex]R_2[/tex] = rate of effusion of methane gas

[tex]n_1[/tex] = moles of fluorine gas = [tex]5.13\times 10^{-3}mol[/tex]

[tex]n_2[/tex] = moles of methane gas = ?

[tex]t_1=t_2[/tex] = time = 12.3 min  (as per question)

[tex]M_1[/tex] = molar mass of fluorine gas  = 38 g/mole

[tex]M_2[/tex] = molar mass of methane gas = 16 g/mole

Now put all the given values in the above formula 1, we get:

[tex][\frac{(\frac{5.13\times 10^{-3}mol}{12.3min})}{(\frac{n_2}{12.3min})}]=\sqrt{\frac{16g/mole}{38g/mole}}[/tex]

[tex]n_2=7.90\times 10^{-3}mol[/tex]

Therefore, the moles of methane gas could be, [tex]7.90\times 10^{-3}mol[/tex]

RELAXING NOICE
Relax