Respuesta :
Answer:
90% confidence interval for the mean waste recycled per person per day for the population of Washington is [2.074 , 2.526].
Step-by-step explanation:
We are given that a a random sample of 10 residents of the state of Washington, the mean waste recycled per person per day was 2.3 pounds with a standard deviation of 0.39 pounds.
Firstly, the pivotal quantity for 90% confidence interval for the mean waste recycled per person per day for the population of Washington is given by;
P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean waste recycled per person per day = 2.3 pounds
s = sample standard deviation = 0.39 pounds
n = sample of residents = 10
[tex]\mu[/tex] = population mean waste recycled per person per day
Here for constructing 90% confidence interval we have used t statistics because we don't know about population standard deviation.
So, 90% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-1.833 < [tex]t_9[/tex] < 1.833) = 0.90 {As the critical value of t at 9 degree of
freedom are -1.833 & 1.833 with P = 5%}
P(-1.833 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.833) = 0.90
P( [tex]-1.833 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]1.833 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.90
P( [tex]\bar X-1.833 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.833 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.90
90% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.833 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+1.833 \times {\frac{s}{\sqrt{n} } }[/tex] ]
= [ [tex]2.3-1.833 \times {\frac{0.39}{\sqrt{10} } }[/tex] , [tex]2.3-1.833 \times {\frac{0.39}{\sqrt{10} } }[/tex] ]
= [2.074 , 2.526]
Therefore, 90% confidence interval for the mean waste recycled per person per day for the population of Washington is [2.074 , 2.526].