At the instant under consideration, the hydraulic cylinder AB has a length L = 0.75 m, and this length is momentarily increasing at a constant rate of 0.2 m/s. If vA = 0.6 m/s and θ = 35°, determine the velocity of slider B.

Respuesta :

Answer:

vB = - 0.176 m/s   (↓-)

Explanation:

Given

(AB) = 0.75 m

(AB)' = 0.2 m/s

vA = 0.6 m/s

θ = 35°

vB = ?

We use the formulas

Sin θ = Sin 35° = (OA)/(AB) ⇒  (OA) = Sin 35°*(AB)

⇒   (OA) = Sin 35°*(0.75 m) = 0.43 m

Cos θ = Cos 35° = (OB)/(AB) ⇒  (OB) = Cos 35°*(AB)

⇒   (OB) = Cos 35°*(0.75 m) = 0.614 m

We apply Pythagoras' theorem as follows

(AB)² = (OA)² + (OB)²

We derive the equation

2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB

⇒  (AB)*(AB)' = (OA)*vA + (OB)*vB

⇒  vB = ((AB)*(AB)' - (OA)*vA) / (OB)

then we have

⇒  vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)

⇒  vB = - 0.176 m/s   (↓-)

The pic can show the question.

Ver imagen jolis1796

Answer:

VB = -0.1759

Explanation:

For a comprehensive step by step method check attachment, to view solution

Ver imagen Geophilip
RELAXING NOICE
Relax