A cable hangs between two poles of equal height and 35 feet apart. At a point on the ground directly under the cable and x feet from the point on the ground halfway between the poles the height of the cable in feet is h(x)=10+(0.1)(x1.5). The cable weighs 10.4 pounds per linear foot. Find the weight of the cable.

Respuesta :

Answer:

293.38 pounds

Step-by-step explanation:

We are given that

Distance between poles=35 feet

[tex]h(x)=10+0.1(x^{1.5})[/tex]

Weight of cable=10.4 per linear foot

We have to find the weight of the cable.

Differentiate w.r.t

[tex]h'(x)=0.1(1.5)x^{0.5}=0.15x^{0.5}[/tex]

[tex]s=2\int_{0}^{17.5}\sqrt{1+(h'(x))^2}dx[/tex]

[tex]s=2\int_{0}^{17.5}\sqrt{1+(0.15x^{0.5})^2}dx[/tex]

[tex]s=2\int_{0}^{17.5}\sqrt{1+0.0225x}dx[/tex]

Let [tex]1+0.0225x=t[/tex]

[tex]dx=\frac{1}{0.0225}dt[/tex]

[tex]s=\frac{2}{0.0225}\int_{0}^{17.5}\sqrt{t}dt[/tex]

[tex]s=\frac{2}{0.0225}\times\frac{2}{3}[t^{\frac{3}{2}}]^{17.5}_{0}[/tex]

[tex]s=2\times \frac{2}{3\times0.0225}[(1+0.0255x)^{\frac{3}{2}]^{17.5}_{0}[/tex]

[tex]s=\frac{4}{3\times 0.0225}((1+0.0225(17.5))^{\frac{3}{2}-1)[/tex]

s=28.21

Weight of cable=[tex]28.21\times 10.4=293.38[/tex]pound

RELAXING NOICE
Relax