Construct a​ 99% confidence interval for the population​ mean, mu. Assume the population has a normal distribution. A group of 19 randomly selected students has a mean age of 22.4 years with a standard deviation of 3.8 years.

Respuesta :

Answer:

99% confidence interval for the population​ mean is [19.891 , 24.909].

Step-by-step explanation:

We are given that a group of 19 randomly selected students has a mean age of 22.4 years with a standard deviation of 3.8 years.

Assuming the population has a normal distribution.

Firstly, the pivotal quantity for 99% confidence interval for the population​ mean is given by;

         P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean age of selected students = 22.4 years

             s = sample standard deviation = 3.8 years

             n = sample of students = 19

             [tex]\mu[/tex] = population mean

Here for constructing 99% confidence interval we have used t statistics because we don't know about population standard deviation.

So, 99% confidence interval for the population​ mean, [tex]\mu[/tex] is ;

P(-2.878 < [tex]t_1_8[/tex] < 2.878) = 0.99  {As the critical value of t at 18 degree of

                                                freedom are -2.878 & 2.878 with P = 0.5%}

P(-2.878 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.878) = 0.99

P( [tex]-2.878 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.878 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.99

P( [tex]\bar X -2.878 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +2.878 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.99

99% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X -2.878 \times {\frac{s}{\sqrt{n} }[/tex] , [tex]\bar X +2.878 \times {\frac{s}{\sqrt{n} }[/tex] ]

                                                 = [ [tex]22.4 -2.878 \times {\frac{3.8}{\sqrt{19} }[/tex] , [tex]22.4 +2.878 \times {\frac{3.8}{\sqrt{19} }[/tex] ]

                                                 = [19.891 , 24.909]

Therefore, 99% confidence interval for the population​ mean is [19.891 , 24.909].

RELAXING NOICE
Relax