Respuesta :
Answer:
99% confidence interval for the population mean is [19.891 , 24.909].
Step-by-step explanation:
We are given that a group of 19 randomly selected students has a mean age of 22.4 years with a standard deviation of 3.8 years.
Assuming the population has a normal distribution.
Firstly, the pivotal quantity for 99% confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean age of selected students = 22.4 years
s = sample standard deviation = 3.8 years
n = sample of students = 19
[tex]\mu[/tex] = population mean
Here for constructing 99% confidence interval we have used t statistics because we don't know about population standard deviation.
So, 99% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-2.878 < [tex]t_1_8[/tex] < 2.878) = 0.99 {As the critical value of t at 18 degree of
freedom are -2.878 & 2.878 with P = 0.5%}
P(-2.878 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.878) = 0.99
P( [tex]-2.878 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.878 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.99
P( [tex]\bar X -2.878 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +2.878 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.99
99% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X -2.878 \times {\frac{s}{\sqrt{n} }[/tex] , [tex]\bar X +2.878 \times {\frac{s}{\sqrt{n} }[/tex] ]
= [ [tex]22.4 -2.878 \times {\frac{3.8}{\sqrt{19} }[/tex] , [tex]22.4 +2.878 \times {\frac{3.8}{\sqrt{19} }[/tex] ]
= [19.891 , 24.909]
Therefore, 99% confidence interval for the population mean is [19.891 , 24.909].
