Respuesta :
Answer:
The [tex]K_c[/tex] for [tex][Fe(NCS)]^{2+}[/tex] formation is [tex]5.7\times 10^2[/tex].
Explanation:
[tex]Moles=Concentration\times Volume (L)[/tex]
[tex]Fe(NO_3)_3(aq)\rightarrow Fe^{3+}(aq)+3NO_3^{-}(aq)[/tex]
[tex][Fe(NO_3)_3]=0.02 M=[Fe^{3+}][/tex]
Concentration of ferric ion = [tex][Fe^{3+}]=0.02 M[/tex]
Volume of ferric solution = 3.0 mL = 0.003 L
Moles of ferric ion [tex]=0.02 M\times 0.003 L[/tex]
1 mL = 0.001 L
[tex]NaNCS(aq)\rightarrow Na^+(aq)+NCS^-(aq)[/tex]
[tex][NaNCS]=0.002 M=[NCS^-][/tex]
Concentration of [tex]NCS^-[/tex] ion = [tex][NCS^{-}]=0.002 M[/tex]
Volume of [tex]NCS^-[/tex] ion solution = 3.0 mL = 0.003 L
Moles of [tex]NCS^-[/tex] ion= [tex]0.002 M\times 0.003 L[/tex]
Volume of nitric acid solution = 10 mL = 0.010 L
After mixing all the solution the concentration of ferric ion and [tex]NCS^-[/tex] ion will change
Total volume of solution = 0.003 L + 0.003 L + 0.010 L = 0.016 L
Initial concentration of ferric ion before reaching equilibrium :
= [tex]\frac{0.02 M\times 0.003 L}{0.016 L}=0.00375 M[/tex]
Initial concentration of [tex]NCS^-[/tex] ion before reaching equilibrium :
= [tex]\frac{0.002 M\times 0.003 L}{0.016 L}=0.000375 M[/tex]
[tex]Fe^{3+}+NCS^-\rightleftharpoons [Fe(NCS)]^{2+}[/tex]
Initially:
0.00375 M 0.000375 M 0
At equilibrium :
(0.00375-x) (0.000375-x) x
Equilibrium concentration of [tex][Fe(NCS)]^{2+}=x=2.5\times 10^{-4} M[/tex]
The expression of equilibrium constant for formation [tex][Fe(NCS)]^{2+}[/tex] is given by :
[tex]K_c=\frac{[[Fe(NCS)]^{2+}]}{[Fe^{3+}][NCS^-]}[/tex]
[tex]K_c=\frac{x}{(0.00375-x)\times (0.000375-x)}[/tex]
[tex]K_c=\frac{2.5\times 10^{-4} }{(0.00375-2.5\times 10^{-4})\times (0.000375-2.5\times 10^{-4})}[/tex]
[tex]K_c=5.7\times 10^2[/tex]
The [tex]K_c[/tex] for [tex][Fe(NCS)]^{2+}[/tex] formation is [tex]5.7\times 10^2[/tex].