3.0 mL of 0.02 M Fe(NO3)3 solution is mixed with 3.0 mL of 0.002 M NaNCS and diluted to the mark with HNO3 in 10 mL volumetric flask. The blood-red [Fe(NCS)]2+ ion that forms has an equilibrium molar concentration of 2.5*10-4 mol/L as determined from the calibration plot. Calculate the Kc for [Fe(NCS)]2+ formation. Assume the volumes are additive.

Respuesta :

Answer:

The [tex]K_c[/tex] for [tex][Fe(NCS)]^{2+}[/tex] formation is [tex]5.7\times 10^2[/tex].

Explanation:

[tex]Moles=Concentration\times Volume (L)[/tex]

[tex]Fe(NO_3)_3(aq)\rightarrow Fe^{3+}(aq)+3NO_3^{-}(aq)[/tex]

[tex][Fe(NO_3)_3]=0.02 M=[Fe^{3+}][/tex]

Concentration of ferric ion = [tex][Fe^{3+}]=0.02 M[/tex]

Volume of ferric solution = 3.0 mL = 0.003 L

Moles of ferric ion  [tex]=0.02 M\times 0.003 L[/tex]

1 mL = 0.001 L

[tex]NaNCS(aq)\rightarrow Na^+(aq)+NCS^-(aq)[/tex]

[tex][NaNCS]=0.002 M=[NCS^-][/tex]

Concentration of [tex]NCS^-[/tex] ion = [tex][NCS^{-}]=0.002 M[/tex]

Volume of [tex]NCS^-[/tex] ion solution = 3.0 mL = 0.003 L

Moles of [tex]NCS^-[/tex] ion= [tex]0.002 M\times 0.003 L[/tex]

Volume of nitric acid solution = 10 mL = 0.010 L

After mixing all the solution the concentration of ferric ion and [tex]NCS^-[/tex] ion will change

Total volume of solution = 0.003 L + 0.003 L + 0.010 L = 0.016 L

Initial concentration of ferric ion before reaching equilibrium :

= [tex]\frac{0.02 M\times 0.003 L}{0.016 L}=0.00375 M[/tex]

Initial concentration of [tex]NCS^-[/tex] ion before reaching equilibrium :

= [tex]\frac{0.002 M\times 0.003 L}{0.016 L}=0.000375 M[/tex]

[tex]Fe^{3+}+NCS^-\rightleftharpoons [Fe(NCS)]^{2+}[/tex]

Initially:

0.00375 M    0.000375 M       0

At equilibrium :

(0.00375-x)   (0.000375-x)       x

Equilibrium concentration of [tex][Fe(NCS)]^{2+}=x=2.5\times 10^{-4} M[/tex]

The expression of equilibrium constant for formation [tex][Fe(NCS)]^{2+}[/tex] is given by :

[tex]K_c=\frac{[[Fe(NCS)]^{2+}]}{[Fe^{3+}][NCS^-]}[/tex]

[tex]K_c=\frac{x}{(0.00375-x)\times (0.000375-x)}[/tex]

[tex]K_c=\frac{2.5\times 10^{-4} }{(0.00375-2.5\times 10^{-4})\times (0.000375-2.5\times 10^{-4})}[/tex]

[tex]K_c=5.7\times 10^2[/tex]

The [tex]K_c[/tex] for [tex][Fe(NCS)]^{2+}[/tex] formation is [tex]5.7\times 10^2[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico