Answer:
[tex]\sqrt[3]{0.95} \approx 0.983\\\\\\\sqrt[3]{1.1} \approx 1.033[/tex]
Step-by-step explanation:
The function is:
[tex]g(x) =\sqrt[3]{1+x}[/tex]
We can find a linear aproximation around a point with a Taylor's series:
[tex]g(x)\approx g(a)+g'(a)(x-a)[/tex]
The value of g(a) is
[tex]g(a)=g(0)=\sqrt[3]{1+0}=1[/tex]
We have to calculate the firste derivative of g(x):
[tex]g'(x)=\frac{d}{dx}[(1+x)^ {1/3}]=(1/3)(1+x)^{-2/3}=\frac{1}{3(1+x)^{2/3}}[/tex]
Then, we calculate g'(a)
[tex]g'(a)=g'(0)=\frac{1}{3(1+0)^{2/3}}=\frac{1}{3*1}= \frac{1}{3}[/tex]
The linear approximation is:
[tex]g(x)\approx1+\frac{1}{3} (x-0)=\frac{x}{3}[/tex]
Calculate [tex]\sqrt[3]{0.95}[/tex]
We can use the linear approximation to calculate this, with x=-0.05.
[tex]0.95=1+x\rightarrow x=-0.05\\\\\sqrt[3]{0.95} \approx 1+\frac{(-0.05)}{3} =1-0.017=0.983[/tex]
Calculate [tex]\sqrt[3]{1.1}[/tex]
We can use the linear approximation to calculate this, with x=0.1.
[tex]1.1=1+x\rightarrow x=0.1\\\\\sqrt[3]{1.1} \approx 1+\frac{(0.1)}{3} =1+0.033=1.033[/tex]