Respuesta :
Answer:
Cost = $0.08
Step-by-step explanation:
Volume of the Container =[tex]10m^3[/tex]
Volume of a Cuboid =lwh
Since the length of the base is twice the width: l=2w
[tex]2w*h*w=10\\2w^{2}h=10[/tex]
Total Surface Area of a Cuboid = 2(LW+LH+WH)
Material for the base costs $10 per square meter.
Cost of the Base = $10 X LW = $(10LW)
Cost of the Sides and the top =$6(LW+2(LH+WH))=$(6LW+12LH+12WH)
Total Cost=$(10LW)+$(6LW+12LH+12WH)
=16LW+12LH+12WH
From the volume,
[tex]\\2w^{2}h=10\\h=\frac{10}{2w^{2}} =5w^{2}[/tex]
Also, l=2w
Substituting H and L into 16LW+12LH+12WH
[tex]16(2W)W+12(2W)(5W^2)+12W(5W^2)\\Cost(W)=32W^2+120W^3+10W^3\\Cost(W)=32W^2+240W^3[/tex]
The Minimum Value of C(W) is at the point where the derivative=0.
[tex]C^{'}(W)=64W+720W^2\\If C^{'}(W)=0\\64W+720W^2=0\\720W^2=-64W\\720W=-64\\W=-\frac{4}{45}[/tex]
[tex]Cost(W)=32(-\frac{4}{45})^2+240(-\frac{4}{45})^3\\Cost = $0.08[/tex]
Answer:
$165.75
Step-by-step explanation:
Let's assume the width to be = x
Since the length is twice that of the base,then the lenght will be = 2x
Let height = y
with the above variables, we set an equation for volume and cost.
10 = 2x × y = volume
Volume: V = Lwh
10 = (2x)(x)(y)
10 = 2yx²
y = 5/x²
Cost: C(w) = 10(Lw) + 2[6(hw)] + 2[6(hL)])
= 10(2x²) + 2(6(yx)) + 2(6(y)(2x)
= 20x² + 2[6w(5/x²)] + 2[12w(5/x²)]
= 20w^2 + 60/w + 120/w
= 20x² + 180x^(-1)
C'(x) = 40x - 180x^(-2)
Critical numbers:
(40x³- 180)/x² = 0
40x³-180 = 0
40x³= 180
x³= 9/2
x = 1.65 m ( the width)
2x= 3.30 m (the length)
y = 1.84 m (the height)
Cost: C = 10(Lw) + 2[6(hw)] + 2[6(hL)])
= 10(3.30)(1.65) + 2[6(1.84)(1.65)] + 2[6(1.84)(3.30)])
= $165.75 cheapest cost
The cost of materials will be cheapest when the width of the
container is 1.65 meters, base length is 3.30 meters, and the height is
1.84 meters.
Otras preguntas
