Answer:
a) [tex]P(A)=P(x<15)=\sum_{k=0}^{14}\binom{100}{k}0.2^k0.8^{100-k}[/tex]
b) [tex]P(A)\approx 0.085[/tex]
Step-by-step explanation:
The proportion of defective gadgets for this factory is p=0.2.
If a sample of n=100 gadgets is taken from the production, we can model the amount of defectives gadgets in this sample as a binomial random variable.
The probability of having k defectives in the sample can be written as:
[tex]P(x=k)=\binom{100}{k}p^k(1-p)^{100-k}[/tex]
Then, we can write the expression to calculate the probabilities of A: "less than 15 gadgets are mildly defective":
[tex]P(A)=P(x<15)=\sum_{k=0}^{14}P(k)=\sum_{k=0}^{14}\binom{100}{k}p^k(1-p)^{100-k}\\\\\\P(A)=P(x<15)=\sum_{k=0}^{14}\binom{100}{k}0.2^k0.8^{100-k}[/tex]
If we approximate this binomial distribtution to a normal distribution, we can calculate the new parameters as:
[tex]\mu=np=100*0.2=20\\\\\sigma=\sqrt{np(1-p)}=\sqrt{100*0.2*0.8}=\sqrt{16}=4[/tex]
The continuity factor is applied for the change from a discrete distribution (binomial) to a continous distribution (normal). Then we have:
[tex]P(A)=P(X<15)=P(X<14.5)\\\\[/tex]
Now, we can calculate the probability P(A):
[tex]z=(X-\mu)/\sigma=(14.5-20)/4=-5.5/4=-1.375\\\\P(A)=P(X<14.5)=P(z<-1.375)=0.085[/tex]