Answer:
(a). The value of angular speed of the merry-go-round [tex]\omega[/tex] = - 5.82 × [tex]10^{-3}[/tex] [tex]\frac{rad}{s}[/tex]
(b). The linear speed of the girl after the rock is thrown V = -1.89 × [tex]10^{-2}[/tex] [tex]\frac{m}{s}[/tex]
Explanation:
Given data
Mass of the girl [tex]m_{g}[/tex] = 50.6 kg
Mass of merry-go-round [tex]m_{m}[/tex] = 827 kg
Radius r = 3.72 m
The speed of the rock relative to the ground [tex]V_{r}[/tex] = 7.82 [tex]\frac{m}{s}[/tex]
(a). The angular speed of the merry-go-round is given by
[tex]\omega = - [\frac{m_{r}v_{r} }{r} ] \frac{2}{m_{m} + 2m_{g} }[/tex]
Put all the values in above formula
[tex]\omega = \frac{(1.13)(7.82)}{3.27} \frac{2}{827 + (2)50.6}[/tex]
[tex]\omega[/tex] = - 5.82 × [tex]10^{-3}[/tex] [tex]\frac{rad}{s}[/tex]
This is the value of angular speed of the merry-go-round.
(b). The liner speed of the girl is given by
⇒ V = r × [tex]\omega[/tex]
⇒ V = - 3.72 × 5.82 × [tex]10^{-3}[/tex]
⇒ V = -1.89 × [tex]10^{-2}[/tex] [tex]\frac{m}{s}[/tex]
This is the linear speed of the girl after the rock is thrown.