Respuesta :
Answer:
(a) 2.6 mA
Explanation:
We are given that
Radius of coil=r=5 cm=[tex]\frac{5}{100}=0.05 m[/tex]
1 m=100 cm
Resistance,R=0.20 ohm
Magnetic field,B=[tex]0.50e^{-0.20t} T[/tex]
t=2 s
We know that
Emf,[tex]E=-\frac{d(BA)}{dt}=-A\frac{dB}{dt}=-(\pi r^2)\frac{d(0.5e^{-0.20t})}{dt}[/tex]
[tex]E=3.14(0.05)^2(0.20)(0.5)e^{-0.20t}[/tex]
Substitute t=2
[tex]E=3.14(0.05)^2(0.5)(0.20)e^{-0.20\times 2}=5.26\times 10^{-4} V[/tex]
Current,I=[tex]\frac{E}{R}=\frac{5.26\times 10^{-4}}{0.2}=2.6\times 10^{-3} A=2.6 mA[/tex]
[tex]1 mA=10^{-3}A [/tex]
Answer:
option (A)
Explanation:
radius, r = 5 cm = 0.05 m
resistance, R = 0.20 ohm
Magnetic field, B = 0.5 e ^-0.20t
Let i be the induced current and e is the induced emf
By use of Faraday's law of electromagnetic induction
e = - dФ/dt
where, Ф is the magnetic flux
Ф = B x A
where, B is the strength of magnetic field and A is the area of coil.
[tex]e=- A\frac{dB}{dt}[/tex]
[tex]e=- \pi r^{2}\times 0.5 \times (-0.20)e^{-0.20t}[/tex]
[tex]e=7.85\times 10^{-4}\times e^{-0.20t}[/tex]
induced emf at t = 2 s
[tex]e=7.85\times 10^{-4}\times e^{-0.4}[/tex]
e = 5.26 x 10^-4 V
i = e / R = 2.63 x 10^-3 A
i = 2.6 mA
Option (A)
