Respuesta :
Answer:
It is proved that [tex]\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}[/tex]
Step-by-step explanation:
Given vector field,
[tex]F=P\uvec{i}+Q\uvec{j}+R\uvec{k}[/tex]
Where,
[tex]P=f_x=\frac{\partial f}{\partial x}, Q=f_y=\frac{\partial f}{\partial y}, R=f_z=\frac{\partial f}{\partial z}[/tex]
To show,
[tex]\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}[/tex]
Consider,
[tex]\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial y\partial x}=\frac{\partial^2 f}{\partial x\partial y}=\frac{\partial }{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial Q}{\partial x}[/tex]
[tex]\frac{\partial P}{\partial z}=\frac{\partial}{\partial z}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial z\partial x}=\frac{\partial^2 f}{\partial x\partial z}=\frac{\partial }{\partial x}(\frac{\partial f}{\partial z})=\frac{\partial R}{\partial x}[/tex]
[tex]\frac{\partial Q}{\partial z}=\frac{\partial}{\partial z}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial z\partial y}=\frac{\partial^2 f}{\partial y\partial z}=\frac{\partial}{\partial y}(\frac{\partial f}{\partial z})=\frac{\partial R}{\partial y}[/tex]
Hence proved.
By using Clairaut's Theorem, the vector field F is shown as:
[tex]\mathbf{\dfrac{\partial P}{\partial y} = \dfrac{\partial Q}{\partial x}} \\ \\ \\ \mathbf{\dfrac{\partial P}{\partial z} = \dfrac{\partial R}{\partial x}} \\ \\ \\ \mathbf{\dfrac{\partial Q}{\partial z}= \dfrac{\partial R}{\partial y}}[/tex]
Suppose there exists a vector field [tex]\mathbf{F^{\to } = P\hat i + Q \hat j + R\hat k}[/tex] that is conservative.
Then we can say there exists a function (f) such that; [tex]\nabla f^{\to}= F^{\to}[/tex]
i.e.
[tex]\mathbf{Pi+Qj+Rk = \dfrac{\partial f}{\partial x}i +\dfrac{\partial f}{\partial y}j+ \dfrac{\partial f }{\partial z}k }[/tex]
[tex]\mathbf{Pi+Qj+Rk = f_xi +f_yj+f_zk}[/tex]
Relating the above to component terms, we have:
[tex]\mathbf{f_x = P, f_y = Q, F_z = R}[/tex]
So,
[tex]\mathbf{\dfrac{\partial P}{\partial y }=f_{xy}, \dfrac{\partial Q}{\partial x }=f_{yx} , \dfrac{\partial P}{\partial z }=f_{xz}}[/tex]
[tex]\mathbf{\dfrac{\partial R}{\partial x }=f_{zx}, \dfrac{\partial Q}{\partial z }=f_{yz} , \dfrac{\partial R}{\partial y }=f_{zy}}[/tex]
Given that, P, Q, and R have continuous first order partials derivatives of F,
Then;
[tex]\mathbf{f_{xy}= f_{yx},} \\ \\ \mathbf{f_{xz}=f_{zx}} \\ \\ \mathbf{f_{yz}= f_{zy}}[/tex]
Using Clairaut's Theorem, which showcases that the mixed partial derivatives are equal, we get:
[tex]\mathbf{\dfrac{\partial P}{\partial y} = \dfrac{\partial Q}{\partial x}} \\ \\ \\ \mathbf{\dfrac{\partial P}{\partial z} = \dfrac{\partial R}{\partial x}} \\ \\ \\ \mathbf{\dfrac{\partial Q}{\partial z}= \dfrac{\partial R}{\partial y}}[/tex]
Learn more about vector field here:
https://brainly.com/question/24332269?referrer=searchResults