Respuesta :

Answer:

1. Geometric sequence

2. [tex]-2(-3)^{n-1}[/tex] ; [tex]A_{1}=-2[/tex]

3. [tex]A_{n}=-2(-3)^{n-1}[/tex]

Step-by-step explanation:

The sequence is Geometric.

For the sequence to be Geometric , then there must exist a common ratio

check:

6/-2 = -18/6 = 54/-18 = -3

The recursive formula for the sequence is :

[tex]-2(-3)^{n-1}[/tex] ; [tex]A_{1}=-2[/tex]

To find the explicit formula:

The formula for the nth term of a Geometric sequence is given as :

[tex]A_{n}=ar^{n-1}[/tex]

where :

a = first term

r = common ratio

so , substituting the values into the formula , we have :

[tex]A_{n}=-2(-3)^{n-1}[/tex]

therefore : the explicit formula = [tex]A_{n}=-2(-3)^{n-1}[/tex]

RELAXING NOICE
Relax