The rectangle's area is the product of its length and width. Differentiating both the area and the product with respect to time [tex]t[/tex] gives
[tex]A=\ell w\implies\dfrac{\mathrm dA}{\mathrm dt}=\ell\dfrac{\mathrm dw}{\mathrm dt}+\dfrac{\mathrm d\ell}{\mathrm dt}w[/tex]
The length and width increase at respective rates of [tex]\frac{\mathrm d\ell}{\mathrm dt}=3\frac{\rm cm}{\rm s}[/tex] and [tex]\frac{\mathrm dw}{\mathrm dt}=4\frac{\rm cm}{\rm s}[/tex].
At the moment [tex]\ell=15\,\mathrm{cm}[/tex] and [tex]w=11\,\mathrm{cm}[/tex], the area is increasing at a rate of
[tex]\dfrac{\mathrm dA}{\mathrm dt}=(15\,\mathrm{cm})\left(3\dfrac{\rm cm}{\rm s}\right)+\left(4\dfrac{\rm cm}{\rm s}\right)(11\,\mathrm{cm})=89\dfrac{\mathrm{cm}^2}{\rm s}[/tex]