contestada

series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz source drives a peak current of 0.65 mA through the circuit. Part A What is the spacing between the capacitor plates?

Respuesta :

Answer:

[tex]d=1.84\ mm[/tex]

Explanation:

Capacitance

A two parallel-plate capacitor has a capacitance of

[tex]\displaystyle C=\frac{\epsilon_o A}{d}[/tex]

where

[tex]\epsilon_o=8.85\cdot 10^{-12}\ F/m[/tex]

A = area of the plates = [tex]\pi r^2[/tex]

d = separation of the plates

[tex]\displaystyle d=\frac{\epsilon_o A}{C}=\frac{\epsilon_o \pi r^2}{C}[/tex]

We need to compute C. We'll use the circuit parameters for that. The reactance of a capacitor is given by

[tex]\displaystyle X_c=\frac{1}{wC}[/tex]

where w is the angular frequency

[tex]w=2\pi f=2\pi \cdot 36000=226194.67\ rad/s[/tex]

Solving for C

[tex]\displaystyle C=\frac{1}{wX_c}[/tex]

The reactance can be found knowing the total impedance of the circuit:

[tex]Z^2=R^2+X_c^2[/tex]

Where R is the resistance, [tex]R=15 K\Omega=15000\Omega[/tex]. Solving for Xc

[tex]X_c^2=Z^2-R^2[/tex]

The magnitude of the impedance is computed as the ratio of the rms voltage and rms current

[tex]\displaystyle Z=\frac{V}{I}[/tex]

The rms current is the peak current Ip divided by [tex]\sqrt{2}[/tex], thus

[tex]\displaystyle Z=\frac{\sqrt{2}V}{I_p}[/tex]

[tex]I_p=0.65\ mA/1000=0.00065\ A[/tex]

Now collect formulas

[tex]\displaystyle X_c^2=Z^2-R^2=\left(\frac{\sqrt{2}V}{I_p}\right)^2-R^2[/tex]

Or, equivalently

[tex]\displaystyle X_c=\sqrt{\frac{2V^2}{I_p^2}-R^2}[/tex]

[tex]\displaystyle X_c=\sqrt{\frac{2\cdot 18^2}{0.00065^2}-15000^2}[/tex]

[tex]X_c=36176.34\ \Omega[/tex]

The capacitance is now

[tex]\displaystyle C=\frac{1}{226194.67\cdot 36176.34}=1.22\cdot 10^{-10}\ F[/tex]

The radius of the plates is

[tex]r=18\ cm/2=9 \ cm = 0.09 \ m[/tex]

The separation between the plates is

[tex]\displaystyle d=\frac{8.85\cdot 10^{-12} \cdot \pi\cdot 0.09^2}{1.22\cdot 10^{-10}}[/tex]

[tex]d=0.00184\ m[/tex]

[tex]\boxed{d=1.84\ mm}[/tex]

RELAXING NOICE
Relax