Answer:
[tex]0.536\sqrt{\frac{GM}{R}}[/tex]
Explanation:
We are given that
Mass of one asteroid 1,[tex]m_1=M[/tex]
Mass of asteroid 2,[tex]m_2=1.97 M[/tex]
Initial distance between their centers,d=13.63 R
Radius of each asteroid=R
d'=R+R=2R
Initial velocity of both asteroids
[tex]u=0[/tex]
We have to find the speed of second asteroid just before they collide.
According to law of conservation of momentum
[tex](m_1+m_2)u=m_1v_1+m_2v_2[/tex]
[tex](M+1.97 M)\times 0=Mv_1+1.97Mv_2[/tex]
[tex]Mv_1=-1.97 Mv_2[/tex]
[tex]v_1=-1.97v_2[/tex]
According to law of conservation of energy
[tex]Gm_1m_2(\frac{1}{d'}-\frac{1}{d})=\frac{1}{2}m_1v^2_1+\frac{1}{2}m_2v^2_2[/tex]
[tex]GM(1.97M)(\frac{1}{2R}-\frac{1}{13.63R})=\frac{1}{2}M(-1.97v_2)^2+\frac{1}{2}(1.97M)v^2_2[/tex]
[tex]1.97M^2G(\frac{13.63-2}{27.26R})=\frac{1}{2}Mv^2_2(3.8809+1.97)[/tex]
[tex]1.97MG(\frac{11.63}{27.26 R})=\frac{1}{2}(5.8509)v^2_2[/tex]
[tex]v^2_2=\frac{1.97GM\times11.63\times 2}{27.26R\times 5.8509}[/tex]
[tex]v_2=\sqrt{\frac{1.97GM\times11.63\times 2}{27.26R\times 5.8509}}[/tex]
[tex]v_2=0.536\sqrt{\frac{GM}{R}}[/tex]
Hence, the speed of second asteroid =[tex]0.536\sqrt{\frac{GM}{R}}[/tex]