If link AB of the four-bar linkage has a constant counterclockwise angular velocity of 58 rad/s during an interval which includes the instant represented, determine the angular acceleration of AO (positive if counterclockwise, negative if clockwise) and the acceleration of point D.

Respuesta :

Answer:Vb=-6i-(-0.1ωab+8)j m/s

Explanation:

Va=V0+Va0

Va=V0+(ra0 x ωao)

ω=Angular velocity of link A0

Using r0a=0.1m;

Va=V0+(0.1i x ω0a K)

Va=0

ixk=j

Va=0+0.1ω0aj

Calculating te velocity of using te equation below

Vb=Va+Vba

Vb=Va+ωab x rba

ωab=40rad/s

rab=-0.21i+0.15j

Va=0.1ω0aj

Vb=Va+ωabxrba

Vb=0.1ω0aj+40k x -(0.21i+0.15j)

Vb=0.1ω0aj-8j-6i

Vb=-6i-(-0.1ωab+8)j m/s

The angular acceleration of the bar [tex]AO[/tex] is 560.673 radians per square second and the acceleration of point [tex]D[/tex] is 3501595.696 milimeters per square second.

How to solve a general plane motion problem

Bars [tex]AO[/tex] and [tex]CB[/tex] are only rotating, whereas bar [tex]AB[/tex] experiments a general plane motion, that is, a combination of rotational and translational motion. In addition, the latter have a constant angular velocity ([tex]\vec \omega_{AB}[/tex]), in radians per second.

To obtain the given information, we must find all angular speeds and accelerations from relative velocity and acceleration formulas:

Relative velocity

[tex]\vec v_{B}-\vec v_{A} = \vec v_{B/A}[/tex] (1)

[tex](-r_{CB}\cdot \omega_{B},0) - (0, r_{OA}\cdot \omega_{A}) = (-r_{AB}\cdot \omega_{AB}\cdot \cos \theta_{AB}, -r_{AB}\cdot \omega_{AB}\cdot \sin \theta_{AB})[/tex]

Whose solution is:

[tex]\omega_{A} = \frac{r_{AB}\cdot \omega_{AB}\cdot \cos \theta_{AB}}{r_{CB}}[/tex]   (2)

[tex]\omega_{B} = \frac{r_{AB}\cdot \omega_{AB}\cdot \cos \theta_{AB}}{r_{CB}}[/tex]   (3)

Relative acceleration

[tex]\vec a_{B}^{n} + \vec a_{B}^{t}-\vec a_{A}^{n}-\vec a_{A}^{t} = \vec a_{B/A}^{n}+\vec a_{B/A}^{t}[/tex] (4)

[tex](0, -\omega_{B}^{2}\cdot r_{CB}) + (-\alpha_{B}\cdot r_{CB}, 0)-(-\omega_{A}^{2}, 0)-(0, \alpha_{A}\cdot r_{OA}) = (r_{BA}\cdot \cos \theta_{AB}, -r_{BA}\cdot \sin \theta_{AB}) + (0,0)[/tex]

Whose solution is:

[tex]\alpha_{A} = \frac{r_{BA}\cdot \omega_{AB}^{2}\cdot \sin \theta_{AB}-\omega_{B}^{2}\cdot r_{CB}}{r_{OA}}[/tex]   (5)

[tex]\alpha_{B} = \frac{\omega_{A}^{2}\cdot r_{OA}-r_{BA}\cdot \omega_{BA}^{2}\cdot \cos \theta_{AB}}{r_{CB}}[/tex]   (6)

The angular acceleration of the bar [tex]AO[/tex] is given by (5) and the acceleration of point [tex]D[/tex] is given by (3) and (6) and the following formula:

[tex]a_{D} = r_{CD}\cdot \sqrt{\omega_{B}^{4}+\alpha_{B}^{2}}[/tex]   (7)

If we know that [tex]r_{BA} = 300\,mm[/tex], [tex]r_{CB} = 180\,mm[/tex], [tex]r_{OA} = 120\,mm[/tex], [tex]\theta_{AB} \approx 36.870^{\circ}[/tex], [tex]r_{CD} = 260\,mm[/tex] and [tex]\omega_{AB} = 58\,\frac{rad}{s}[/tex], then the angular acceleration of AO and the acceleration of point D are, respectively:

By (2) and (3):

[tex]\omega_{A} = 87\,\frac{rad}{s}[/tex], [tex]\omega_{B} = 116\,\frac{rad}{s}[/tex]

By (5) and (6):

[tex]\alpha_{A} = -15137.988\,\frac{rad}{s^{2}}[/tex], [tex]\alpha_{B} = 560.673\,\frac{rad}{s^{2}}[/tex]

And by (7):

[tex]a_{D} = 3501595.696\,\frac{mm}{s^{2}}[/tex]

The angular acceleration of the bar [tex]AO[/tex] is 560.673 radians per square second and the acceleration of point [tex]D[/tex] is 3501595.696 milimeters per square second. [tex]\blacksquare[/tex]

Remark

Statement is incomplete and the figure of the four-bar system is missing. We proceed to include the entire statement below:

If link [tex]AB[/tex] of the four-bar linkage has a constant counterclockwise angular velocity of 58 radians per second during an interval which includes the instant represented, determine the angular acceleration of [tex]AO[/tex] (positive if counterclockwise, negative if clockwise) and the acceleration of point [tex]D[/tex].

To learn more on angular motion, we kindly invite to check this verified question: https://brainly.com/question/21482828

Ver imagen xero099
RELAXING NOICE
Relax