Answer:
The ray's angle of incidence on the diamond is 65.47°
Explanation:
Data
refractive index of water:[tex]n_{water} =1.33[/tex]
refractive index of diamond: [tex]n_{diamond } =2.42[/tex]
We can solve it by using snell's law.
snell's law:
[tex]n_{water} *sin(tita)_{i} =n_{diamond} *sin(tita)_{r}[/tex]
divide both side by [tex]n_{water}[/tex]
[tex]sin(tita)_{i} =\frac{n_{diamond} *sin(tita)_{r}}{n_{water} } \\sin(tita)_{i} =\frac{2.42*sin(30)}{1.33} \\sin(tita)_{i} =\frac{1.21}{1.33}[/tex]
θi[tex]=sin^{-1} (0.9098)[/tex]
θi[tex]=65.47[/tex]°