Answer:
231.318853151 N
5.32958637659 N
[tex]F_1=0.873329758565w[/tex] and [tex]F_2=0.0201215176373w[/tex]
Explanation:
m = Mass of child = 27 kg
r = Distance from center
[tex]\omega[/tex] = Angular velocity
Centripetal force is given by
[tex]F_1=m\omega^2 r\\\Rightarrow F_1=27\times \left(\dfrac{25\times 2\pi}{60}\right)^2\times 1.25\\\Rightarrow F_2=231.318853151\ N[/tex]
The centripetal force is 231.318853151 N
At r = 8 m and [tex]\omega=1.5\ rev/min[/tex]
[tex]F_2=m\omega^2 r\\\Rightarrow F_2=27\times \left(\dfrac{1.5\times 2\pi}{60}\right)^2\times 8\\\Rightarrow F_2=5.32958637659\ N[/tex]
The centripetal force is 5.32958637659 N
Comparing
[tex]\dfrac{F_1}{w}=\dfrac{231.318853151}{27\times 9.81}=0.873329758565\\\Rightarrow F_1=0.873329758565w[/tex]
[tex]\dfrac{F_2}{w}=\dfrac{5.32958637659}{27\times 9.81}=0.0201215176373\\\Rightarrow F_2=0.0201215176373w[/tex]
[tex]F_1=0.873329758565w[/tex] and [tex]F_2=0.0201215176373w[/tex]