Respuesta :
Answer:
a) [tex]T_{2} = 360.955\,K[/tex], [tex]P_{2} = 138569.171\,Pa\,(1.386\,bar)[/tex], b) [tex]T_{2} = 347.348\,K[/tex], [tex]V_{2} = 0.14\,m^{3}[/tex]
Explanation:
a) The ideal gas is experimenting an isocoric process and the following relationship is used:
[tex]\frac{T_{1}}{P_{1}} = \frac{T_{2}}{P_{2}}[/tex]
Final temperature is cleared from this expression:
[tex]Q = n\cdot \bar c_{v}\cdot (T_{2}-T_{1})[/tex]
[tex]T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{v}}[/tex]
The number of moles of the ideal gas is:
[tex]n = \frac{P_{1}\cdot V_{1}}{R_{u}\cdot T_{1}}[/tex]
[tex]n = \frac{\left(101,325\,Pa + \frac{(200\,kg)\cdot (9.807\,\frac{m}{s^{2}} )}{0.15\,m^{2}} \right)\cdot (0.12\,m^{3})}{(8.314\,\frac{Pa\cdot m^{3}}{mol\cdot K} )\cdot (298\,K)}[/tex]
[tex]n = 5.541\,mol[/tex]
The final temperature is:
[tex]T_{2} = 298\,K +\frac{10,500\,J}{(5.541\,mol)\cdot (30.1\,\frac{J}{mol\cdot K} )}[/tex]
[tex]T_{2} = 360.955\,K[/tex]
The final pressure is:
[tex]P_{2} = \frac{T_{2}}{T_{1}}\cdot P_{1}[/tex]
[tex]P_{2} = \frac{360.955\,K}{298\,K}\cdot \left(101,325\,Pa + \frac{(200\,kg)\cdot (9.807\,\frac{m}{s^{2}} )}{0.15\,m^{2}}\right)[/tex]
[tex]P_{2} = 138569.171\,Pa\,(1.386\,bar)[/tex]
b) The ideal gas is experimenting an isobaric process and the following relationship is used:
[tex]\frac{T_{1}}{V_{1}} = \frac{T_{2}}{V_{2}}[/tex]
Final temperature is cleared from this expression:
[tex]Q = n\cdot \bar c_{p}\cdot (T_{2}-T_{1})[/tex]
[tex]T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{p}}[/tex]
[tex]T_{2} = 298\,K +\frac{10,500\,J}{(5.541\,mol)\cdot (38.4\,\frac{J}{mol\cdot K} )}[/tex]
[tex]T_{2} = 347.348\,K[/tex]
The final volume is:
[tex]V_{2} = \frac{T_{2}}{T_{1}}\cdot V_{1}[/tex]
[tex]V_{2} = \frac{347.348\,K}{298\,K}\cdot (0.12\,m^{3})[/tex]
[tex]V_{2} = 0.14\,m^{3}[/tex]
