A frictionless piston cylinder device is subjected to 1.013 bar external pressure. The piston mass is 200 kg, it has an area of 0.15 m2, and the initial volume of the entrapped ideal gas is 0.12 m3. The piston and cylinder do not conduct heat, but heat can be added to the gas by a heating coil. The gas has a constant-volume heat capacity of 30.1 J/(mol K) and an initial temperature of 298 K, and 10.5 kJ of energy are to be supplied to the gas through the heating coil.

a.) If stops placed at the initial equilibrium position of the piston prevent it from rising, what will be the final temperature and pressure of the gas?
b.) If the piston is allowed to move freely, what will be the final temperature and volume of the gas?

Respuesta :

Answer:

a) [tex]T_{2} = 360.955\,K[/tex], [tex]P_{2} = 138569.171\,Pa\,(1.386\,bar)[/tex], b) [tex]T_{2} = 347.348\,K[/tex], [tex]V_{2} = 0.14\,m^{3}[/tex]

Explanation:

a) The ideal gas is experimenting an isocoric process and the following relationship is used:

[tex]\frac{T_{1}}{P_{1}} = \frac{T_{2}}{P_{2}}[/tex]

Final temperature is cleared from this expression:

[tex]Q = n\cdot \bar c_{v}\cdot (T_{2}-T_{1})[/tex]

[tex]T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{v}}[/tex]

The number of moles of the ideal gas is:

[tex]n = \frac{P_{1}\cdot V_{1}}{R_{u}\cdot T_{1}}[/tex]

[tex]n = \frac{\left(101,325\,Pa + \frac{(200\,kg)\cdot (9.807\,\frac{m}{s^{2}} )}{0.15\,m^{2}} \right)\cdot (0.12\,m^{3})}{(8.314\,\frac{Pa\cdot m^{3}}{mol\cdot K} )\cdot (298\,K)}[/tex]

[tex]n = 5.541\,mol[/tex]

The final temperature is:

[tex]T_{2} = 298\,K +\frac{10,500\,J}{(5.541\,mol)\cdot (30.1\,\frac{J}{mol\cdot K} )}[/tex]

[tex]T_{2} = 360.955\,K[/tex]

The final pressure is:

[tex]P_{2} = \frac{T_{2}}{T_{1}}\cdot P_{1}[/tex]

[tex]P_{2} = \frac{360.955\,K}{298\,K}\cdot \left(101,325\,Pa + \frac{(200\,kg)\cdot (9.807\,\frac{m}{s^{2}} )}{0.15\,m^{2}}\right)[/tex]

[tex]P_{2} = 138569.171\,Pa\,(1.386\,bar)[/tex]

b) The ideal gas is experimenting an isobaric process and the following relationship is used:

[tex]\frac{T_{1}}{V_{1}} = \frac{T_{2}}{V_{2}}[/tex]

Final temperature is cleared from this expression:

[tex]Q = n\cdot \bar c_{p}\cdot (T_{2}-T_{1})[/tex]

[tex]T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{p}}[/tex]

[tex]T_{2} = 298\,K +\frac{10,500\,J}{(5.541\,mol)\cdot (38.4\,\frac{J}{mol\cdot K} )}[/tex]

[tex]T_{2} = 347.348\,K[/tex]

The final volume is:

[tex]V_{2} = \frac{T_{2}}{T_{1}}\cdot V_{1}[/tex]

[tex]V_{2} = \frac{347.348\,K}{298\,K}\cdot (0.12\,m^{3})[/tex]

[tex]V_{2} = 0.14\,m^{3}[/tex]

RELAXING NOICE
Relax