Answer:
The values for
[tex]Ka_{1} = 10^{-4.15}= 7.07 X 10^{-5}[/tex] & [tex]Ka_{2}=10^{-7.22}= 6.02 X10^{-8}[/tex]
Explanation:
Dissociation of diprotic acid is as follows
[tex]H_{2}A(aq) = H^{+}(aq) + HA^{-} (aq)[/tex] ----------------(i)
[tex]HA^{-}(aq)=H^{+}(aq) + A^{2-}(aq)[/tex] ---------------(ii)
At the first equivalence point 50% of the acidic proton is lost , then it has the other 50% of its conjugate base.
From equation (i) we can write
[tex]Ka_{1}= \frac{[H^{+} ][HA^{-} ]}{[H_{2}A ]}[/tex]
[tex]pH_{1} = -logKa_{1} + log\frac{[Base]}{[Acid]}[/tex]
[tex]4.15 = -logKa_{1}+log\frac{0.5}{0.5}[/tex]
∵ At equivalence point [Conjugate base = Acid]
[tex]Ka_{1} = 10^{-4.15}= 7.07 X 10^{-5}[/tex]
From equation (ii) we can also write
[tex]pH_{2}=-log Ka_{2} + log\frac{[Base]}{[Acid]} \\pH_{2}=-log Ka_{2} + log\frac{[A^{2-} ]}{[HA^{-} ]}\\\\7.22 = - logKa_{2} +log(1)\\\\Ka_{2}=10^{-7.22}= 6.02 X10^{-8}[/tex]