Respuesta :
Answer:
95% confidence interval for the proportion of adults in the United States whose favorite sport to watch is football is [0.265 , 0.316].
Step-by-step explanation:
We are given that in a simple random sample of 1219 US adults, 354 said that their favorite sport to watch is football.
Firstly, the pivotal quantity for 95% confidence interval for the proportion of adults in the United States whose favorite sport to watch is football is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = proportion of adults in the United States whose favorite sport to watch is football in a sample of 1219 adults = [tex]\frac{354}{1219}[/tex]
n = sample of US adults = 1291
p = population proportion of adults
Here for constructing 95% confidence interval we have used One-sample z proportion statistics.
So, 95% confidence interval for the population proportion, p is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5%
significance level are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ) = 0.95
P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ) = 0.95
95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ]
= [ [tex]\frac{354}{1219}-1.96 \times {\sqrt{\frac{\frac{354}{1219}(1-\frac{354}{1219})}{1219} }[/tex] , [tex]\frac{354}{1219}+1.96 \times {\sqrt{\frac{\frac{354}{1219}(1-\frac{354}{1219})}{1219} }[/tex] ]
= [0.265 , 0.316]
Therefore, 95% confidence interval for the proportion of adults in the United States whose favorite sport to watch is football is [0.265 , 0.316].
Otras preguntas
