Respuesta :
Answer/Explanation:
From the properties of stainless steel AISI 302.
At temperature 100°C, Thermal coefficient Ks = 16.2W/m.K.
Water at 40°C, Kf = 0.62W/m.K.
Using the rate equation, applying energy balance at x = 0,
Ks (T1 - T2)L = h(T1 - T[infinity])
h = (Ks/L) * (T1 - T2)/(T - T[infinity])
h is water flow convention coefficient, T1, T2, Ks, and L have their usual notations.
T1 = 100°C, T2 = 40°C,
T[infinity] = 25°C, L = 0.2m
h = (16.2W/m.K/0.2m) * (60/15)
h = 324W/m².K
Temperature gradient in the wall (dT/dx) = -(T1 - T2)/L = -60°C/0.2m = -300°C/m
In water at x = 0, the definition of h gives
(dT/dx)x=0 = -h/Kf(40°C - 25°C)
= (324W/m².K x 15°C)/0.62W/m.K = 7838.7°C/m
Answer:
a) Water flow convection coefficient [tex]k_{w} = 0.62 W/mk[/tex]
b) Temperature gradient in the wall, [tex]\frac{dT}{dx} = 300^{0} C/m[/tex]
c) Temperature gradient in the water, [tex]\frac{dT}{dy} = 8370.97 ^{0}C/m[/tex]
Explanation:
Assumption: The flow is at steady state
At 400 K, steel has a thermal conductivity of, [tex]k_{st} = 17.3 W/mk[/tex]
[tex]T_{ \infty} = 25^{0} C\\[/tex]
Temperature at the bottom, [tex]T_{b} = 100^{0}C[/tex]
Temperature at the top, [tex]T_{t} = 40^{0}C[/tex]
Thickness of the stainless steel, L = 0.2 m
Film temperature of water, [tex]T_{f} = \frac{T_{\infty} + T_{t} }{2}[/tex]
[tex]T_{f} = \frac{25+ 40 }{2} \\T_{f} = 32.5^{0} C[/tex]
[tex]T_{f} =32.5 + 273\\T_{f} =305.5 K[/tex]
a) Thermal conductivity of water at 305.5 K
[tex]k_{w} = 0.62 W/mk[/tex]
b) Temperature gradient of steel, [tex]\frac{dT}{dx} = \frac{T_{b} - T_{t} }{L}[/tex]
[tex]\frac{dT}{dx} = \frac{100 - 40 }{0.2}[/tex]
[tex]\frac{dT}{dx} = 300^{0} C/m\\\frac{dT}{dx} = 300 + 273\\\frac{dT}{dx} = 573 K/m[/tex]
Since steady state heat transfer is assumed, heat transfer by conduction equals heat transfer by convection
[tex]k_{st} A\frac{dT}{dx} = hA (T_{t} - T_{\infty} )[/tex]
17.3 * A * 300 = h*A* (40 - 25)
h = 5190/15
h = 346 W/m²K
c) To calculate the temperature gradient in water, equate the heat transfer in both water and steel.
That is, [tex]k_{w} \frac{dT}{dy} = k_{st} \frac{dT}{dx}[/tex]
[tex]k_{w} \frac{dT}{dy} = k_{st} \frac{dT}{dx}\\0.62 * \frac{dT}{dy} = 17.3 * 300\\\frac{dT}{dy} = 5190/0.62\\\frac{dT}{dy} = 8370.97 ^{0}C/m[/tex]
Where [tex]\frac{dT}{dy}[/tex] is the temperature gradient of water
