Light with a wavelength of (465 A) nm is incident on a metal surface with a work function of (1.25 (0.1)(B)) eV. Find the maximum kinetic energy of the emitted photoelectrons. Give your answer in eV and with 3 significant figures.

Respuesta :

Answer:

The maximum kinetic energy of photoelectrons is 3.02 eV

Explanation:

Given:

Wavelength of light [tex]\lambda = 465 \times 10^{-9}[/tex] m

Work function [tex]\phi = 1.25[/tex] eV

From the theory of photoelectric effect,

   [tex]KE_{max} = hf - \phi[/tex]

Where [tex]f =[/tex] frequency of light, [tex]\phi[/tex] = work function its depends on nature of metal.

[tex]hf = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8} }{465 \times 10^{-9} }[/tex]

     [tex]= 0.0427 \times 10^{-17}[/tex]

Now we convert energy in terms of electrovolt,

[tex]hf = \frac{0.0427 \times 10^{-17} }{1.6 \times 10^{-19} }[/tex]

[tex]hf = 4.27[/tex] eV

Put above value,

[tex]KE_{max} = 4.27 -1.25[/tex]

[tex]KE_{max} = 3.02[/tex] eV

Therefore, the maximum kinetic energy of photoelectrons is 3.02 eV

RELAXING NOICE
Relax