Answer:
The maximum kinetic energy of photoelectrons is 3.02 eV
Explanation:
Given:
Wavelength of light [tex]\lambda = 465 \times 10^{-9}[/tex] m
Work function [tex]\phi = 1.25[/tex] eV
From the theory of photoelectric effect,
[tex]KE_{max} = hf - \phi[/tex]
Where [tex]f =[/tex] frequency of light, [tex]\phi[/tex] = work function its depends on nature of metal.
[tex]hf = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8} }{465 \times 10^{-9} }[/tex]
[tex]= 0.0427 \times 10^{-17}[/tex]
Now we convert energy in terms of electrovolt,
[tex]hf = \frac{0.0427 \times 10^{-17} }{1.6 \times 10^{-19} }[/tex]
[tex]hf = 4.27[/tex] eV
Put above value,
[tex]KE_{max} = 4.27 -1.25[/tex]
[tex]KE_{max} = 3.02[/tex] eV
Therefore, the maximum kinetic energy of photoelectrons is 3.02 eV