Find the maximum rate of change of f at the given point and the direction in which it occurs. f(x, y) = 5 sin(xy), (0, 2) maximum rate of change Incorrect: Your answer is incorrect. direction vector

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]f(x,y)=5 sinxy[/tex]

Point=(x,y)=(0,2)

We have to find the maximum rate of change of f at given point.

[tex]f_x(x,y)=5ycos(xy)[/tex]

[tex]f_x(0,2)=5(2)cos0=10[/tex]

[tex]f_y(x,y)=5xcosxy[/tex]

[tex]f_y(0,2)=5(0)cos0=0[/tex]

[tex]\Delta f(0,2)=f_x(0,2)+f_y(0,2)=10i+0j[/tex]

Maximum rate of change of f at point (0,2)=[tex]\mid \Delta f(0,2)\mid=\sqrt{x^2+y^2}[/tex]

Where x=Coefficient of i

y=Coefficient of j

By using the formula

Maximum rate of change of f at point (0,2)=[tex]\sqrt{(10)^2+0}=10[/tex]

Direction of maximum rate of change of f=[tex]\Delta\har{f}=\frac{\Delta f(0,2)}{\mid\Delta f(0,2)\mid}=\frac{10i}{10}=i[/tex]

ACCESS MORE
EDU ACCESS