Answer with Step-by-step explanation:
We are given that
[tex]f(x,y)=5 sinxy[/tex]
Point=(x,y)=(0,2)
We have to find the maximum rate of change of f at given point.
[tex]f_x(x,y)=5ycos(xy)[/tex]
[tex]f_x(0,2)=5(2)cos0=10[/tex]
[tex]f_y(x,y)=5xcosxy[/tex]
[tex]f_y(0,2)=5(0)cos0=0[/tex]
[tex]\Delta f(0,2)=f_x(0,2)+f_y(0,2)=10i+0j[/tex]
Maximum rate of change of f at point (0,2)=[tex]\mid \Delta f(0,2)\mid=\sqrt{x^2+y^2}[/tex]
Where x=Coefficient of i
y=Coefficient of j
By using the formula
Maximum rate of change of f at point (0,2)=[tex]\sqrt{(10)^2+0}=10[/tex]
Direction of maximum rate of change of f=[tex]\Delta\har{f}=\frac{\Delta f(0,2)}{\mid\Delta f(0,2)\mid}=\frac{10i}{10}=i[/tex]