A plastic dowel has a Young's Modulus of 1.50 ✕ 1010 N/m2. Assume the dowel will break if more than 1.50 ✕ 108 N/m2 is exerted. (a) What is the maximum force (in kN) that can be applied to the dowel assuming a diameter of 2.70 cm? kN (b) If a force of this magnitude is applied compressively, by how much (in mm) does the 28.0 cm long dowel shorten? (Enter the magnitude.) mm

Respuesta :

Answer:

(A) The maximum force is 85.8 kN.

(B) Dowel shorten by 2.79 mm

Explanation:

Given:

Young modulus [tex]E = 1.50 \times 10^{10}[/tex] [tex]\frac{N}{m^{2} }[/tex]

Pressure fracture [tex]P = 1.50 \times 10^{8}[/tex] [tex]\frac{N}{m^{2} }[/tex]

Diameter [tex]D = 2.70 \times 10^{-2}[/tex] m

Radius [tex]r = 1.35 \times 10^{-2}[/tex] m

(A)

From the formula of force in terms of pressure,

[tex]F=PA[/tex]

Where [tex]A =[/tex] area of dowel

[tex]F = 1.50 \times 10^{8} \times \pi (1.35 \times 10^{-2} ) ^{2}[/tex]

[tex]F = 85.8 \times 10^{3}[/tex]

[tex]F = 85.8[/tex] kN

(B)

From young modulus formula,

 [tex]E = \frac{FL}{A\Delta L}[/tex]

Where [tex]L = 28 \times 10^{-2}[/tex]m

[tex]\Delta L = \frac{FL}{AE}[/tex]

[tex]\Delta L = \frac{85.8 \times 10^{3} \times 28 \times 10^{-2} }{\pi (1.35 \times 10^{-2} )^{2} \times 1.50 \times 10^{10} }[/tex]

[tex]\Delta L = 2.79 \times 10^{-3}[/tex]

[tex]\Delta L = 2.79[/tex] mm

Therefore, the maximum force is 85.8 kN and dowel shorten by 2.79 mm

RELAXING NOICE
Relax