Answer:
(A) The maximum force is 85.8 kN.
(B) Dowel shorten by 2.79 mm
Explanation:
Given:
Young modulus [tex]E = 1.50 \times 10^{10}[/tex] [tex]\frac{N}{m^{2} }[/tex]
Pressure fracture [tex]P = 1.50 \times 10^{8}[/tex] [tex]\frac{N}{m^{2} }[/tex]
Diameter [tex]D = 2.70 \times 10^{-2}[/tex] m
Radius [tex]r = 1.35 \times 10^{-2}[/tex] m
(A)
From the formula of force in terms of pressure,
[tex]F=PA[/tex]
Where [tex]A =[/tex] area of dowel
[tex]F = 1.50 \times 10^{8} \times \pi (1.35 \times 10^{-2} ) ^{2}[/tex]
[tex]F = 85.8 \times 10^{3}[/tex]
[tex]F = 85.8[/tex] kN
(B)
From young modulus formula,
[tex]E = \frac{FL}{A\Delta L}[/tex]
Where [tex]L = 28 \times 10^{-2}[/tex]m
[tex]\Delta L = \frac{FL}{AE}[/tex]
[tex]\Delta L = \frac{85.8 \times 10^{3} \times 28 \times 10^{-2} }{\pi (1.35 \times 10^{-2} )^{2} \times 1.50 \times 10^{10} }[/tex]
[tex]\Delta L = 2.79 \times 10^{-3}[/tex]
[tex]\Delta L = 2.79[/tex] mm
Therefore, the maximum force is 85.8 kN and dowel shorten by 2.79 mm