a square green rug has a blue square in the center. the side length of the blue square is x inches. the width of the green band that surrounds the blue square is 6 inches. what is the area of the green band

Respuesta :

Answer:

[tex]12(x+3)[/tex] square inches.

Step-by-step explanation:

Given:

A square green rug has a blue square in the center.

The side length of the blue square is x inches as shown in the figure:

The width of the green band that surrounds the blue square is 6 inches.

Question asked:

What is the area of the green band ?

Solution:

Side length of blue square = [tex]x[/tex]

First of all we will calculate area of blue square.

As we know:

[tex]Area of square=(Side)^{2}[/tex]

                       [tex]=x^{2}[/tex]

Thus, area of blue square = [tex]x^{2}[/tex]

Now, we will calculate area of square green rug:

Side length of green rug = Side length of blue square + width which surrounds the blue square

Side length of green rug = [tex]x+6[/tex]

Thus,  area of square green rug = [tex]=(x+6)^{2} \\[/tex]

Now, we will find area of the green band ( shaded region with green color as shown in the figure)

Area of the green band = Area of square green rug -  Area of blue square        

                                       [tex]=(x+6)^{2} -x^{2} \\=(x+6+x)(x+6-x)\ [a^{2} -b^{2} =(a+b)(a-b)][/tex]

                                       [tex]=(2x+6)6\\=12x+36\\[/tex]

                                       [tex]=12(x+3)\ taking\ 12\ as\ common[/tex]

Therefore, the area of the green band is [tex]12(x+3)[/tex] square inches.

Ver imagen jitushashi123
ACCESS MORE
EDU ACCESS
Universidad de Mexico