Answer:
The dimensions that minimize the amount of cardboard used is
x = 31 cm , y = 34 cm & Z = 15.54 cm
Step-by-step explanation:
Volume of the cardboard = 16,384 [tex]cm^{3}[/tex]
The function that represents the area of the cardboard without a lid is given by
[tex]f (x,y,z) = xy + 2xz + 2yz[/tex] ------ (1)
Volume of the cardboard with sides x, y & z is
[tex]xyz = 16384[/tex]
[tex]z = \frac{16384}{xy}[/tex]
Put this value of z in equation (1) we get
[tex]f (x,y,z) = xy + 2x(\frac{16384}{xy} ) + 2y(\frac{16384}{xy} )[/tex]
[tex]f (x,y,z) = xy + \frac{32768}{y} + 2y(\frac{32768}{x} )[/tex]
Differentiate above equation with respect to x & y we get
[tex]f_{x} = y - \frac{32768}{x^{2} }[/tex]
[tex]f_{y} = x - \frac{32768}{y^{2} }[/tex]
Take [tex]f_{x} = 0 \ and \ f_{y} = 0[/tex]
[tex]y - \frac{32768}{x^{2} } = 0[/tex]
[tex]y = 32768 \ x^{-2}[/tex] ------ (2)
[tex]x - \frac{32768}{y^{2} } = 0[/tex]
[tex]x = 32768 \ y^{-2}[/tex] ------- (3)
By solving equation (2) & (3) we get
[tex]x^{3} = 32768[/tex]
x = 31 cm
From equation 2
[tex]y = 32768 \ x^{-2}[/tex]
y = 32768 ([tex]31^{-2}[/tex])
y = 34 cm
[tex]z = \frac{16384}{xy}[/tex]
[tex]z = \frac{16384}{(34)(31)}[/tex]
Z = 15.54 cm
Thus the dimensions that minimize the amount of cardboard used is
x = 31 cm , y = 34 cm & Z = 15.54 cm