A cardboard box without a lid is to have a volume of 16,384 cm3. Find the dimensions that minimize the amount of cardboard used. (Let x, y, and z be the dimensions of the cardboard box.)

Respuesta :

Answer:

The dimensions that minimize the amount of cardboard used is

x = 31 cm ,  y = 34 cm & Z = 15.54 cm

Step-by-step explanation:

Volume of the cardboard = 16,384 [tex]cm^{3}[/tex]

The function that represents the area of the cardboard without a lid is given by

[tex]f (x,y,z) = xy + 2xz + 2yz[/tex] ------  (1)

Volume of the cardboard with sides x, y & z is

[tex]xyz = 16384[/tex]

[tex]z = \frac{16384}{xy}[/tex]

Put this value of z in equation (1) we get

[tex]f (x,y,z) = xy + 2x(\frac{16384}{xy} ) + 2y(\frac{16384}{xy} )[/tex]

[tex]f (x,y,z) = xy + \frac{32768}{y} + 2y(\frac{32768}{x} )[/tex]

Differentiate above equation with respect to x & y we get

[tex]f_{x} = y - \frac{32768}{x^{2} }[/tex]

[tex]f_{y} = x - \frac{32768}{y^{2} }[/tex]

Take [tex]f_{x} = 0 \ and \ f_{y} = 0[/tex]

[tex]y - \frac{32768}{x^{2} } = 0[/tex]

[tex]y = 32768 \ x^{-2}[/tex]  ------ (2)

[tex]x - \frac{32768}{y^{2} } = 0[/tex]

[tex]x = 32768 \ y^{-2}[/tex]  ------- (3)

By solving equation (2) & (3) we get

[tex]x^{3} = 32768[/tex]

x = 31 cm

From equation 2

[tex]y = 32768 \ x^{-2}[/tex]

y = 32768 ([tex]31^{-2}[/tex])

y = 34 cm

[tex]z = \frac{16384}{xy}[/tex]

[tex]z = \frac{16384}{(34)(31)}[/tex]

Z = 15.54 cm

Thus the dimensions that minimize the amount of cardboard used is

x = 31 cm ,  y = 34 cm & Z = 15.54 cm

RELAXING NOICE
Relax