Answer:
The speed of the boat in still water u = 8 [tex]\frac{mi}{hr}[/tex]
Step-by-step explanation:
Let speed of the boat = u [tex]\frac{mi}{hr}[/tex]
Speed of the current = v [tex]\frac{mi}{hr}[/tex] = 4 [tex]\frac{mi}{hr}[/tex]
Given that the first boat to travel 3 miles upstream and back in a total 1 hour.
So
[tex]\frac{3}{u - v} + \frac{3}{u + v} = 1[/tex]
[tex]\frac{6 u}{u^{2} - v^{2} } = 1[/tex]
[tex]u^{2} - v^{2} - 6 u = 0[/tex]
Since v = 4
[tex]u^{2} - 6 u - 16 = 0[/tex]
By solving above equation
[tex]u^{2} + 2 u - 8 u - 16 = 0[/tex]
[tex]u (u + 2) - 8 (u + 2) = 0[/tex]
[tex](u - 8)(u +2) = 0[/tex]
u = 8 , - 2
Since u = -2 is not valid.
⇒ u = 8 [tex]\frac{mi}{hr}[/tex]
This is the speed of the boat in still water.