Answer:
63.750KeV
Explanation:
We are given that
Initial velocity of second electron,[tex]u_2=0[/tex]
Radius,[tex]r_1=0[/tex]
[tex]r_2=2.3 cm=\frac{2.3}{100}=0.023 m[/tex]
1 m=100 cm
Magnetic field,B=0.0370 T
We have to determine the energy of the incident electron.
Mass of electron,[tex]m=9.1\times 10^{-31} kg[/tex]
Charge on an electron,[tex]q=-1.6\times 10^{-19} C[/tex]
Velocity,[tex]v=\frac{Bqr}{m}[/tex]
Using the formula
Speed of electron,[tex]v_1=\frac{Bqr_1}{m}=\frac{0.0370\times 1.6\times 10^{-19}\times 0}{9.1\times 10^{-31}}=0[/tex]
Speed of second electron,[tex]v_2=\frac{0.0370\times 1.6\times 10^{-19}\times 0.023}{9.1\times 10^{-31}}[/tex]
[tex]v_2=1.5\times 10^8 m/s[/tex]
Kinetic energy of incident electron=[tex]\frac{1}{2}mv^2_1+\frac{1}{2}mv^2_2[/tex]
Kinetic energy of incident electron=[tex]0+\frac{1}{2}(9.1\times 10^{-31})(1.5\times 10^8)^2=1.02\times 10^{-14} J[/tex]
Kinetic energy of incident electron=[tex]\frac{1.02\times 10^{-14}}{1.6\times 10^{-19}}=63750eV=\frac{63750}{1000}=63.750KeV[/tex]
1KeV=1000eV