Answer:
The sum of 2+4+6+8+...+250 will be: 22650
Step-by-step explanation:
Given
2+4+6+8+...+250
2(1+2+3+4+...+150)....[A]
Considering the sequence
1+2+3+4+...+150
Lets calculate the sum of first 150 terms
[tex]\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n[/tex]
[tex]2-1=1,\:\quad \:3-2=1[/tex]
[tex]\mathrm{The\:difference\:between\:all\:of\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}[/tex]
[tex]d=1[/tex]
So the sequence is Arithmetic.
as
[tex]a_1=1[/tex]
and
[tex]d=1[/tex]
[tex]\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}[/tex]
[tex]a_n=a_1+\left(n-1\right)d[/tex]
[tex]a_n=\left(n-1\right)+1[/tex]
[tex]a_n=n[/tex]
[tex]\mathrm{Arithmetic\:sequence\:sum\:formula:}[/tex]
[tex]n\left(a_1+\frac{d\left(n-1\right)}{2}\right)[/tex]
[tex]\mathrm{Plug\:in\:the\:values:}[/tex]
[tex]n=150,\:\spacea_1=1,\:\spaced=1[/tex]
[tex]=150\left(1+\frac{1\cdot \left(150-1\right)}{2}\right)[/tex]
[tex]=150\left(\frac{149}{2}+1\right)[/tex]
[tex]=150\cdot \frac{151}{2}[/tex]
[tex]\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}[/tex]
[tex]=\frac{151\cdot \:150}{2}[/tex]
[tex]=\frac{22650}{2}[/tex]
[tex]=11325[/tex]
So the sum of first 150 terms of the arithmetic
sequence 1+2+3+4+...+150 is: 11325
Now, according to expression [A], multiply 11325 by 2 to determine the sum of 2+4+6+8+...+250.
As
1+2+3+4+...+150 = 11325
Thus
2(1+2+3+4+...+150) = 2(11325) = 22650
Therefore, the sum of 2+4+6+8+...+250 will be: 22650