Answer:
The line A intersect line B at point (-1,-3)
Step-by-step explanation:
step 1
Find the equation of the Line A
the equation of a line in point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=\frac{3}{2}\\point\ (3,3)[/tex]
substitute
[tex]y-3=\frac{3}{2}(x-3)[/tex]
Convert to slope intercept form
isolate the variable y
[tex]y-3=\frac{3}{2}x-\frac{9}{2}[/tex]
[tex]y=\frac{3}{2}x-\frac{9}{2}+3[/tex]
[tex]y=\frac{3}{2}x-\frac{3}{2}[/tex] ----> equation A
step 2
Find the equation of the Line B
the equation of a line in point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=-\frac{1}{3}\\point\ (-4,-2)[/tex]
substitute
[tex]y+2=-\frac{1}{3}(x+4)[/tex]
Convert to slope intercept form
isolate the variable y
[tex]y+2=-\frac{1}{3}x-\frac{4}{3}[/tex]
[tex]y=-\frac{1}{3}x-\frac{4}{3}-2[/tex]
[tex]y=-\frac{1}{3}x-\frac{10}{3}[/tex] ----> equation B
step 3
Solve the system of equations A and B by graphing
The intersection point both graphs is the solution of the system
using a graphing tool
The line A intersect line B at point (-1,-3)
see the attached figure