Respuesta :

Answer:

The line A intersect line B at point (-1,-3)

Step-by-step explanation:

step 1

Find the equation of the Line A

the equation of a line in point slope form is equal to

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=\frac{3}{2}\\point\ (3,3)[/tex]

substitute

[tex]y-3=\frac{3}{2}(x-3)[/tex]

Convert to slope intercept form

isolate the variable y

[tex]y-3=\frac{3}{2}x-\frac{9}{2}[/tex]

[tex]y=\frac{3}{2}x-\frac{9}{2}+3[/tex]

[tex]y=\frac{3}{2}x-\frac{3}{2}[/tex] ----> equation A

step 2

Find the equation of the Line B

the equation of a line in point slope form is equal to

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=-\frac{1}{3}\\point\ (-4,-2)[/tex]

substitute

[tex]y+2=-\frac{1}{3}(x+4)[/tex]

Convert to slope intercept form

isolate the variable y

[tex]y+2=-\frac{1}{3}x-\frac{4}{3}[/tex]

[tex]y=-\frac{1}{3}x-\frac{4}{3}-2[/tex]

[tex]y=-\frac{1}{3}x-\frac{10}{3}[/tex] ----> equation B

step 3

Solve the system of equations A and B by graphing

The intersection point both graphs is the solution of the system

using a graphing tool

The line A intersect line B at point (-1,-3)

see the attached figure

Ver imagen calculista
RELAXING NOICE
Relax