Answer:
a) C=0.5 uF
b) B=1000 rad/s
c) R= 4kΩ
d) a purely resistive circuit
e) The average power dissipated by the circuit is 25 mW
Explanation:
a) The resonance frequency is:
[tex]wo^{2} =\frac{1}{LC}[/tex]
Clearing C:
[tex]C=\frac{1}{Lwo^{2} } =\frac{1}{20x10^{-3}*10000^{2} } =5x10^{-7} F=0.5 uF[/tex]
b) The bandwidth is:
[tex]B=\frac{wo}{Q} =\frac{10000}{10} =1000 rad/s[/tex]
c) [tex]Q=woR_{1} C[/tex]
Clearing R1:
[tex]R_{1} =\frac{Q}{woC} =\frac{10}{10000*0.5x10^{-6} } =2000 ohm[/tex]
[tex]R_{1} =\frac{R*4k}{R+4k} \\2k=\frac{R*4k}{R+4k}[/tex]
Clearing R:
R= 4kΩ
d) The admittance is:
[tex]y=\frac{1}{R_{1} }+j(wc-\frac{1}{wL} )[/tex]
at resonance 1, then
[tex]y=\frac{1}{R_{1} }[/tex]
The impedance is:
[tex]z=\frac{1}{y} =\frac{1}{\frac{1}{R_{1} } } =R_{1}[/tex]
Then this is purely resistive, if the source operates at a resonant frequency, the circuit is transformed into a purely resistive circuit.
e) The average power dissipated is equal to:
[tex]P=\frac{V_{m}^{2} }{2R_{1} } =\frac{10^{2} }{2*2k} =25 mW[/tex]