Respuesta :
Answer:
W(r,out) = 5.81 MW
[tex]\eta[/tex] = 86.1 %
Explanation:
we use here steam table for get value of h1, s1 etc
so use for 6MPa and 600 degree
Enthalphy of steam h1 = 3658.8 kJ/kg
Entropy of steam s 1 is = 7.1693 kJ /kg.K
and
for 50 kPa and 100 degree
Enthalphy of steam h2 = 2682.4 kJ/kg
Entropy of steam s2 is = 7.6953 kJ /kg.K
so we use here energy balance equation that is
[tex]m\times(h1 + \frac{v1^2}{2} = m\times(h2 + \frac{v2^2}{2} + W(out)[/tex] ..............1
put here value and we get m
m = [tex]\frac{5\times1000}{3658.8-2682.4+\frac{80^2-140^2}{2}\times \frac{1}{1000}}[/tex]
solve it we get
m = 5.156 kg/s
so by energy balance equation
m[tex]\psi[/tex]1 = m[tex]\psi[/tex]2 + W(r,out)
W(r,out) = m([tex]\psi[/tex]1 -[tex]\psi[/tex]2)
W(r,out) = h1 - h2 + ΔKE + ΔPE - To(s1-s2)
W(r,out) = [tex]m[h1-h2+ \frac{v1^2-v^2}{2}- To (s1-s2)[/tex]
W(r,out) = W(a,out) - m.To.(s1-s2) ........................2
put here value
W(r,out) = 5000 - ( 5.156 × (25 + 273) ×( 7.1693 - 7.6953)
W(r,out) = 5908.19 = 5.81 MW
and
second law deficiency is
[tex]\eta[/tex] = [tex]\frac{W(a,out)}{W(r,out)}[/tex] ..............................3
put here value
[tex]\eta[/tex] = \frac{5}{5.81}
[tex]\eta[/tex] = 86.1 %
