Respuesta :
Answer:
Required result : (a) Divergent. (b) Convergent. (c) Divergent, (d) Not exists. (e) Not exists.
Step-by-step explanation:
By the definition of integral test the series for a integer n and a continuous function f(x) which is monotonic decreasing in [tex][n,\infty)[/tex] then the infinite series [tex]\sum_{n}^{\infty}[/tex] converges or diverges if and only if the improper integral [tex]\int_{n}^{\infty}[/tex] converges or diverges.
Given,
(a) [tex]\sum_{n=1}^{\infty}9^n(\ln(9^n))^n[/tex]
[tex]=5(\ln(9))^5\sum_{n=1}^{\infty}9^nn^5\hfill (1)[/tex]
Then,
[tex]\int_{1}^{\infty}9^n(\ln(9^n))^5[/tex]
[tex]=5(\ln 9)^5\int_{1}^{\infty}9^nn^5dn\hfill (2)[/tex]
Let,
[tex]I=\int 9^nn^9[/tex]
By using integral calculator we get,
[tex]I=\dfrac{\left(2\ln\left(3\right)n\left(\ln\left(3\right)n\left(\ln\left(3\right)n\left(\ln\left(3\right)n\left(2\ln\left(3\right)n-5\right)+10\right)-15\right)+15\right)-15\right)\mathrm{e}^{2\ln\left(3\right)n}}{8\ln^6\left(3\right)}[/tex]
which is divergent. Therefore given (2) is divergent and so is (1).
(b) [tex]\sum_{n=1}^{\infty}ne^{-8n}\hfill (3)[/tex]
Then in integral form,
[tex]\int_{1}^{\infty}ne^{-8n}[/tex]
[tex]=\frac{9e^{-8}}{64}[/tex]
[tex]=4.72\times 10^{-5}[/tex]
Thus given series (3) is convergent.
(c) [tex]\sum_{n=1}^{\infty}ne^{8n}\hfill (4)[/tex]
Then in integral form,
[tex]\int_{1}^{\infty}ne^{-8n}[/tex]
Now let,
[tex]I=\int n e^{-8n}[/tex]
Applying integral calculator we get,
[tex]I=\dfrac{\left(8n-1\right)\mathrm{e}^{8n}}{64}[/tex]
which is divergent and thus,
[tex]\int_{1}^{\infty}I[/tex] is divergent. So, given series (4) is divergent.
(d) [tex]\sun_{n=1}^{\infty}ln(3n)^n[/tex]
which is in integral form,
[tex]\int_{1}^{\infty}\ln (3n)^n[/tex]
during integration since there is no any antiderivative, the result could not be found.
(e) [tex]\sum_{n=1}^{\infty}n+7(-4)^n[/tex]
Integral form is,
[tex]\int_{1}^{\infty}n+7^{(-4)^n}[/tex]
Let,
[tex]I=\int _{1}^{b}n+7^{(-4)^n}[/tex]
Using integral calculator we get,
[tex]I=\frac{1}{2\ln(-4)}\Big[\ln(-4)b^2-2\Gamma(0,-\ln(7)(-4)^b)+2\Gamma(0,4\ln(7))-\ln(-4)\Big][/tex]
But,
[tex]\lim_{b\to \infty}I[/tex] not exists.
