Respuesta :
Answer:
278.63 square inches
Step-by-step explanation:
Gina needs to cut two types of rectangles.
Dimensions of one rectangle is given as,
Width = 12 inches
Length = [tex]14\frac{1}{4}[/tex] = [tex]\frac{57}{4}[/tex] inches
So, the area of this rectangular paper will be
Area = width × length = [tex]12\times \frac{57}{4}[/tex] = 171 inches²
Dimensions of the other rectangular paper has been given as
Width = [tex]10\frac{1}{4}[/tex] = [tex]\frac{41}{4}[/tex] inches
Length = [tex]10\frac{1}{2}[/tex] = [tex]\frac{21}{2}[/tex] inches
So, the area of this rectangle will be
Area = width × length = [tex]\frac{41}{4} \times \frac{21}{2}[/tex] = 107.63 inches²
Thus the total area she need to cut = 171 + 107.63 = 278.63 square inches.
Answer:
Total area of construction paper = 278.63 square inches
Step-by-step explanation:
Given:
Dimension for First rectangle = [tex]12\times 14\frac{1}{4}[/tex]
Dimension for another rectangle = [tex]10\frac{1}{2}\times 10\frac{1}{4}[/tex]
Solution:
First we find the area of the first rectangle
[tex]Area = length\times width[/tex]
[tex]A_{1} = 12\times 14\frac{1}{4}[/tex]
[tex]A_{1} = 12\times \frac{57}{4}[/tex]
[tex]A_{1} = \frac{12\times 57}{4}[/tex]
[tex]A_{1} = 3\times 57[/tex]
[tex]A_{1} = 171\ square\ inches[/tex]
Similarly, we find the area of the another rectangle.
[tex]Area = length\times width[/tex]
[tex]A_{2}= 10\frac{1}{2}\times 10\frac{1}4}[/tex]
[tex]A_{2}= \frac{21}{2}\times \frac{41}4}[/tex]
[tex]A_{2}= \frac{21\times 41}{2\times 4}[/tex]
[tex]A_{2}= \frac{861}{8}[/tex]
[tex]A_{2} = 107.63\ square\ inches[/tex]
So, the total square inches of construction paper is given as:
[tex]A = A_{1}+A_{2}[/tex]
Substitute [tex]A_{1}\ and \ A_{2}\ value[/tex]
[tex]A=171+107.63[/tex]
A = 278.63 square inches
Therefore, Gina needs 278.63 square inches of construction paper for her project.