Given that the equation is [tex]A=\frac{b_1+b_2}{2} \cdot h[/tex]
We need to solve the equation for h.
Value of h:
Let us solve the equation h.
Thus, multiplying both sides of the equation by 2, we get;
[tex]2A=2(\frac{b_1+b_2}{2} \cdot h)[/tex]
Simplifying the terms, we get;
[tex]2A=(b_1+b_2)\cdot h[/tex]
Dividing both sides of the equation by the term [tex](b_1+b_2)[/tex], we get;
[tex]\frac{2A}{b_1+b_2}=h[/tex]
Thus, the value of h is [tex]h=\frac{2A}{b_1+b_2}[/tex]
Therefore, the solution of the equation for the value h is [tex]h=\frac{2A}{b_1+b_2}[/tex]