Respuesta :
Answer:
a) [tex]Q(t) = 180e^{-0.023t}[/tex]
b) 11.4mg of cesium-137 remains after 120 years.
c) 225.8 years.
Step-by-step explanation:
The following equation is used to calculate the amount of cesium-137:
[tex]Q(t) = Q(0)e^{-rt}[/tex]
In which Q(t) is the amount after t years, Q(0) is the initial amount, and r is the rate at which the amount decreses.
(a) Find the mass that remains after t years.
The half-life of cesium-137 is 30 years.
This means that Q(30) = 0.5Q(0). We apply this information to the equation to find the value of r.
[tex]Q(t) = Q(0)e^{-rt}[/tex]
[tex]0.5Q(0) = Q(0)e^{-30r}[/tex]
[tex]e^{-30r} = 0.5[/tex]
Applying ln to both sides of the equality.
[tex]\ln{e^{-30r}} = \ln{0.5}[/tex]
[tex]-30r = \ln{0.5}[/tex]
[tex]r = \frac{\ln{0.5}}{-30}[/tex]
[tex]r = 0.023[/tex]
So
[tex]Q(t) = Q(0)e^{-0.023t}[/tex]
180-mg sample, so Q(0) = 180
[tex]Q(t) = 180e^{-0.023t}[/tex]
(b) How much of the sample remains after 120 years?
This is Q(120).
[tex]Q(t) = 180e^{-0.023t}[/tex]
[tex]Q(120) = 180e^{-0.023*120}[/tex]
[tex]Q(120) = 11.4[/tex]
11.4mg of cesium-137 remains after 120 years.
(c) After how long will only 1 mg remain?
This is t when Q(t) = 1. So
[tex]Q(t) = 180e^{-0.023t}[/tex]
[tex]1 = 180e^{-0.023t}[/tex]
[tex]e^{-0.023t} = \frac{1}{180}[/tex]
[tex]e^{-0.023t} = 0.00556[/tex]
Applying ln to both sides
[tex]\ln{e^{-0.023t}} = \ln{0.00556}[/tex]
[tex]-0.023t = \ln{0.00556}[/tex]
[tex]t = \frac{\ln{0.00556}}{-0.023}[/tex]
[tex]t = 225.8[/tex]
225.8 years.
Answer:
(a) The mass remains after t years is [tex]180.42 e^t[/tex] mg.
(b)Therefore the remains sample after 120 years is 11.25 mg.
(c)Therefore after 224.76 years only 1 mg will remain.
Step-by-step explanation:
The differential equation of decay
[tex]\frac{dN}{dt}=-kN[/tex]
[tex]\Rightarrow \frac{dN}{N}=-kdt[/tex]
Integrating both sides
[tex]\int \frac{dN}{N}=\int-kdt[/tex]
[tex]\Rightarrow ln|N|=-kt+c_1[/tex]
[tex]\Rightarrow N=e^{-kt+c_1}[/tex] [ [tex]c_1[/tex]is arbitrary constant ]
[tex]\Rightarrow N=ce^{-kt}[/tex] [tex][ e^{c_1}=c ][/tex]
Initial condition is, [tex]N=N_0[/tex] when t=0
[tex]\Rightarrow N_0=ce^{-k.0}[/tex]
[tex]\Rightarrow N_0= c[/tex]
Therefore [tex]N=N_0e^{-kt}[/tex]........(1)
N= Amount of radioactive material after t unit time.
[tex]N_0[/tex]= initial amount of radioactive material
k= decay constant.
Half life:
[tex]N= \frac12N_0[/tex] , t= 30 years
[tex]\therefore \frac12 N_0= N_0e^{-k\times 30}[/tex]
[tex]\Rightarrow \frac12=e^{-30t}[/tex]
[tex]\Rightarrow -30k= ln|\frac12|[/tex]
[tex]\Rightarrow k= \frac{ln|\frac12|}{-30}[/tex]
[tex]\Rightarrow k=\frac{ln|2|}{30}[/tex]
(a)
The mass remains after t years N.
[tex]N_0=180[/tex]
Now we put the value of [tex]N_0[/tex] in the equation (1)
[tex]\therefore N=180 \times e^{-\frac{ln|2|}{30}t}[/tex]
[tex]\Rightarrow N= 180\times e^{-0.023t}[/tex].........(2)
The mass remains of cesium after t years is [tex]180\times e^{-0.023t}[/tex] mg.
(b)
Putting [tex]N_0=180[/tex] and t=120 years in equation (2)
[tex]N=180e^{-0.023\times120}[/tex]
[tex]\Rightarrow N=11.25[/tex]
Therefore the remains sample after 120 years is 11.25 mg.
(c)
Now putting N= 1 in equation (2)
[tex]1= 180\times e^{-0.023t}[/tex]
[tex]\Rightarrow \frac{1}{180}=e^{-0.023t}[/tex]
Taking ln both sides
[tex]\Rightarrow ln|\frac{1}{180}|=ln|e^{-0.023t}|[/tex]
[tex]\Rightarrow -ln|180|=-0.023t[/tex]
⇒t=224.76 (approx)
Therefore after 224.76 years only 1 mg will remain.
