The half-life of cesium-137 is 30 years. Suppose we have a 180-mg sample. (a) Find the mass that remains after t years. (b) How much of the sample remains after 120 years? (Round your answer to mg (c) After how long will only 1 mg remain? (Round your answer to one decimal place.) T = yr

Respuesta :

Answer:

a) [tex]Q(t) = 180e^{-0.023t}[/tex]

b) 11.4mg of cesium-137 remains after 120 years.

c) 225.8 years.

Step-by-step explanation:

The following equation is used to calculate the amount of cesium-137:

[tex]Q(t) = Q(0)e^{-rt}[/tex]

In which Q(t) is the amount after t years, Q(0) is the initial amount, and r is the rate at which the amount decreses.

(a) Find the mass that remains after t years.

The half-life of cesium-137 is 30 years.

This means that Q(30) = 0.5Q(0). We apply this information to the equation to find the value of r.

[tex]Q(t) = Q(0)e^{-rt}[/tex]

[tex]0.5Q(0) = Q(0)e^{-30r}[/tex]

[tex]e^{-30r} = 0.5[/tex]

Applying ln to both sides of the equality.

[tex]\ln{e^{-30r}} = \ln{0.5}[/tex]

[tex]-30r = \ln{0.5}[/tex]

[tex]r = \frac{\ln{0.5}}{-30}[/tex]

[tex]r = 0.023[/tex]

So

[tex]Q(t) = Q(0)e^{-0.023t}[/tex]

180-mg sample, so Q(0) = 180

[tex]Q(t) = 180e^{-0.023t}[/tex]

(b) How much of the sample remains after 120 years?

This is Q(120).

[tex]Q(t) = 180e^{-0.023t}[/tex]

[tex]Q(120) = 180e^{-0.023*120}[/tex]

[tex]Q(120) = 11.4[/tex]

11.4mg of cesium-137 remains after 120 years.

(c) After how long will only 1 mg remain?

This is t when Q(t) = 1. So

[tex]Q(t) = 180e^{-0.023t}[/tex]

[tex]1 = 180e^{-0.023t}[/tex]

[tex]e^{-0.023t} = \frac{1}{180}[/tex]

[tex]e^{-0.023t} = 0.00556[/tex]

Applying ln to both sides

[tex]\ln{e^{-0.023t}} = \ln{0.00556}[/tex]

[tex]-0.023t = \ln{0.00556}[/tex]

[tex]t = \frac{\ln{0.00556}}{-0.023}[/tex]

[tex]t = 225.8[/tex]

225.8 years.

Answer:

(a) The mass remains after t years is [tex]180.42 e^t[/tex] mg.

(b)Therefore the remains sample after 120 years is 11.25 mg.

(c)Therefore after 224.76 years only 1 mg will remain.

Step-by-step explanation:

The differential equation of decay

[tex]\frac{dN}{dt}=-kN[/tex]

[tex]\Rightarrow \frac{dN}{N}=-kdt[/tex]

Integrating both sides

[tex]\int \frac{dN}{N}=\int-kdt[/tex]

[tex]\Rightarrow ln|N|=-kt+c_1[/tex]

[tex]\Rightarrow N=e^{-kt+c_1}[/tex]             [ [tex]c_1[/tex]is arbitrary constant ]

[tex]\Rightarrow N=ce^{-kt}[/tex]                 [tex][ e^{c_1}=c ][/tex]

Initial condition is, [tex]N=N_0[/tex] when t=0

[tex]\Rightarrow N_0=ce^{-k.0}[/tex]

[tex]\Rightarrow N_0= c[/tex]

Therefore [tex]N=N_0e^{-kt}[/tex]........(1)

N=  Amount of radioactive material after t unit time.

[tex]N_0[/tex]= initial amount of radioactive material

k= decay constant.

Half life:

[tex]N= \frac12N_0[/tex] , t= 30 years

[tex]\therefore \frac12 N_0= N_0e^{-k\times 30}[/tex]

[tex]\Rightarrow \frac12=e^{-30t}[/tex]

[tex]\Rightarrow -30k= ln|\frac12|[/tex]

[tex]\Rightarrow k= \frac{ln|\frac12|}{-30}[/tex]

[tex]\Rightarrow k=\frac{ln|2|}{30}[/tex]

(a)

The mass remains after t years N.

[tex]N_0=180[/tex]

Now we put the value of [tex]N_0[/tex] in the equation (1)

[tex]\therefore N=180 \times e^{-\frac{ln|2|}{30}t}[/tex]

[tex]\Rightarrow N= 180\times e^{-0.023t}[/tex].........(2)

The mass remains of cesium after t years is [tex]180\times e^{-0.023t}[/tex] mg.

(b)

Putting [tex]N_0=180[/tex] and t=120 years in equation (2)

[tex]N=180e^{-0.023\times120}[/tex]

[tex]\Rightarrow N=11.25[/tex]

Therefore the remains sample after 120 years is 11.25 mg.

(c)

Now putting N= 1 in equation (2)

[tex]1= 180\times e^{-0.023t}[/tex]

[tex]\Rightarrow \frac{1}{180}=e^{-0.023t}[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac{1}{180}|=ln|e^{-0.023t}|[/tex]

[tex]\Rightarrow -ln|180|=-0.023t[/tex]

⇒t=224.76 (approx)

Therefore after 224.76 years only 1 mg will remain.

RELAXING NOICE
Relax