Respuesta :

The height of first (a) triangle is 11.31 cm and the height of the second (b) triangle is 15.49 cm.

Step-by-step explanation:

The given is,

             Triangle (a) and (b)

Step:1

              For first (a) triangle

              (Ref the attachment (a))

                          b = 4 cm

                      hyp = 12 cm

              From Pythagoras theorem,

                    [tex]Hyp^{2} = b^{2} +h^{2}[/tex]...........................(1)

              Equation becomes,

                    [tex]12^{2}[/tex] = [tex]4^{2}[/tex] + [tex]h^{2}[/tex]

                  144 = 16 + [tex]h^{2}[/tex]

                     h = [tex]\sqrt{128}[/tex]

                     h = 11.314 cm

Step:2

        For first (b) triangle

              (Ref the attachment (b))

                          b = 7 cm

                      hyp = 17 cm

              From Pythagoras theorem,

                    [tex]Hyp^{2} = b^{2} +h^{2}[/tex]...........................(1)

              Equation becomes,

                    [tex]17^{2}[/tex] = [tex]7^{2}[/tex] + [tex]h^{2}[/tex]

                  289 = 49 + [tex]h^{2}[/tex]

                     h = [tex]\sqrt{240}[/tex]

                     h = 15.492 cm

Result:

      The height of first (a) triangle is 11.314 cm and the height of the second (b) triangle is 15.492 cm.

       

Ver imagen monica789412

A) height = [tex]11.3cm[/tex] .

B)   height = [tex]15.48cm[/tex] .

Step-by-step explanation:

Here , We need to calculate height of triangles let's do this :

A)

We draw a perpendicular from vertex to base line (8 cm ) , so length becomes 4 cm of base of triangle .

By Pythagoras Theorem we have ,

[tex]Hypotenuse^2 = Perpendicular^2+Base^2[/tex]

⇒ [tex]Hypotenuse^2 = Perpendicular^2+Base^2[/tex]

⇒ [tex]12^2 = Perpendicular^2+4^2[/tex]

⇒ [tex]144 = Perpendicular^2+16[/tex]

⇒ [tex]Perpendicular^2= 144-16[/tex]

⇒ [tex]Perpendicular= \sqrt{128}[/tex]

⇒ [tex]Perpendicular= \sqrt{2^6(2)}[/tex]

⇒ [tex]Perpendicular= 2^3\sqrt{2}[/tex]

⇒ [tex]Perpendicular= 8\sqrt{2}cm[/tex]

Therefore , height = [tex]11.3cm[/tex] .

B)

We draw a perpendicular from vertex to base line (14 cm ) , so length becomes 7 cm of base of triangle .

By Pythagoras Theorem we have ,

[tex]Hypotenuse^2 = Perpendicular^2+Base^2[/tex]

⇒ [tex]Hypotenuse^2 = Perpendicular^2+Base^2[/tex]

⇒ [tex]17^2 = Perpendicular^2+7^2[/tex]

⇒ [tex]289= Perpendicular^2+49[/tex]

⇒ [tex]Perpendicular^2=289-49[/tex]

⇒ [tex]Perpendicular= \sqrt{240}[/tex]

⇒ [tex]Perpendicular= 4\sqrt{15}cm[/tex]

Therefore , height = [tex]15.48cm[/tex] .

RELAXING NOICE
Relax