Respuesta :
The coordinates of point B is (6, -7), if the Point A is at (-6, 8) and point M is at (0, 0.5).
Step-by-step explanation:
The given is,
A (-6, 8)
M (0, 0.5)
Where, A is first point
M is mid point
Step:1
Formula for calculation of Mid point between two points,
[tex](x,y)= (\frac{x_{1}+x_{2} }{2} , \frac{y_{1}+y_{2} }{2} )[/tex]........................(1)
Where,
A (-6, 8) - [tex]( x_{1},y_{1} )[/tex]
M ( 0, 0.5) - [tex](x,y)[/tex]
Substitute the values,
( 0, 0.5) = [tex](\frac{-6+x_{2} }{2}, \frac{8+y_{2} }{2})[/tex]
For x value,
0 = [tex]\frac{-6+x_{2} }{2}[/tex]
0 = -6 + [tex]x_{2}[/tex]
[tex]x_{2}[/tex] = 6
For y values,
0.5 = [tex]\frac{8+y_{2} }{2}[/tex]
1 = 8 + [tex]y_{2}[/tex]
[tex]y_{2}[/tex] = -7
Result:
The coordinates of point B is (6, -7), if the Point A is at (-6, 8) and point M is at (0, 0.5).
Step-by-step explanation:
A is the first point (-6,8) = (x₁,y₁)
M is a mid point (0,0.5)
B is the end point ( [tex]x_{2} ,y_{2}[/tex] )
Using the mid point formula
Mid point = { ( x₁ + x₂) / 2} , { (y₁ + y₂ ) /2 }
Putting the values in the formula -
( 0 , 0.5 ) = ( -6 + x₂ ) /2 , ( 8 + y₂) /2
Evaluating x and y terms respectively
[tex]0 = (-6 + x_{2}) / 2\\x_{2} = 6[/tex]
x coordinate of point B is 6
[tex]0.5 =( 8 + y_{2} ) / 2\\y_{2} = -7[/tex]
y coordinate of point B is -7
Coordinates of point B is (6 , - 7)
