Respuesta :

the expression  [tex]8sin7xcos4x[/tex]  as a sum or difference is  [tex]4(sin(7x+4x)+sin(7x-4x))[/tex] and , is simplified as  [tex]4sin11x+4sin3x[/tex] .

Step-by-step explanation:

We need to rewrite the expression as a sum or difference , them simplify if possible  , And the expression is : [tex]8sin7xcos4x[/tex]

From trigonometric identity we know that

[tex]2sinAcosB = sin(A+B)+sin(A-B)[/tex]

Using the above identity we get:

⇒  [tex]8sin7xcos4x[/tex]

⇒  [tex]4(2sin7xcos4x)[/tex]

⇒  [tex]4(sin(7x+4x)+sin(7x-4x))[/tex]

⇒  [tex]4(sin(11x)+sin(3x))[/tex]

⇒  [tex]4sin11x+4sin3x[/tex]

Therefore , the expression  [tex]8sin7xcos4x[/tex]  as a sum or difference is  [tex]4(sin(7x+4x)+sin(7x-4x))[/tex] and , is simplified as  [tex]4sin11x+4sin3x[/tex] .

RELAXING NOICE
Relax