Respuesta :
Answer:
Step-by-step explanation:
The diagram of the right angle triangle is shown in the attached photo. To determine EF, we would apply Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side²
12² = 8² + EF²
144 = 64 + EF²
EF² = 144 - 64 = 80
EF = √80 = 8.94
1) To determine Sin G, we would apply the Sine trigonometric ratio which is expressed as
Sin θ = opposite side/hypotenuse. Therefore,
Sin G = 8.94/12
CSC G = 1/Sin G = 12/8.94
2) taking F as the reference angle,
EG = opposite side
FG = hypotenuse
SinF = 8/12
3) Tan F = opposite side/adjacent side
Tan F = 8/8.94

The trigonometric ratio ae following:
[tex]cosec(G)=\frac{GF}{EF}=\frac{12}{4\sqrt{5} }=\frac{3\sqrt{5} }{5}\\ \\ sin(F)=\frac{EG}{FG}=\frac{8}{12}=\frac{2}{3}\\ \\ tan(F)=\frac{EG}{EF}=\frac{8}{4\sqrt{5} } =\frac{2\sqrt{5} }{5}[/tex]
Right angle triangle:
Given that, right angle △EFG , in which E is right angle.
[tex]FG=12[/tex] and [tex]EG=8[/tex]
Apply Pythagoras theorem,
[tex]EF^{2}=(12)^{2}-8^{2} \\\\EF^{2}=144-64=80\\\\EF=\sqrt{80}=4\sqrt{5}[/tex]
Triangle EFG is attached below,
The trigonometric ratio of an angle of the triangle are shown below,
[tex]cosec(G)=\frac{GF}{EF}=\frac{12}{4\sqrt{5} }=\frac{3\sqrt{5} }{5}\\ \\ sin(F)=\frac{EG}{FG}=\frac{8}{12}=\frac{2}{3}\\ \\ tan(F)=\frac{EG}{EF}=\frac{8}{4\sqrt{5} } =\frac{2\sqrt{5} }{5}[/tex]
Learn more about right angle triangle here:
https://brainly.com/question/64787

