Use the given data to find a regression line that best fits the price-demand data for price p in dollars as a function of the demand x widgets. Here, price is the dependent variable, and demand is the independent variable. Find the regression function for price, and write it as p ( x )

Respuesta :

Answer:

[tex]m=-\frac{7600}{8250}=-0.921[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{550}{10}=55[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{1042}{10}=104.2[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=104.2-(-0.921*55)=104.707[/tex]

So the line would be given by:

[tex]y=-0.921 x +104.707[/tex]

Step-by-step explanation:

For this case we have the following data given:

Demand (x): 10,20,30,40,50,60,70,80,90,100

Price (y): 141 , 133,126, 128,113,97, 90, 82,79,53

We want to construct a linear model like this:

[tex] y = mx +b[/tex]

For this case we need to calculate the slope with the following formula:

[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]

Where:

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]

So we can find the sums like this:

[tex]\sum_{i=1}^n x_i =550[/tex]

[tex]\sum_{i=1}^n y_i =1042[/tex]

[tex]\sum_{i=1}^n x^2_i =38500[/tex]

[tex]\sum_{i=1}^n y^2_i =115882[/tex]

[tex]\sum_{i=1}^n x_i y_i =49710[/tex]

With these we can find the sums:

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=38500-\frac{550^2}{10}=8250[/tex]

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=49710-\frac{550*1042}{10}=-7600[/tex]

And the slope would be:

[tex]m=-\frac{7600}{8250}=-0.921[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{550}{10}=55[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{1042}{10}=104.2[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=104.2-(-0.921*55)=104.707[/tex]

So the line would be given by:

[tex]p(x)=-0.921 x +104.707[/tex]

RELAXING NOICE
Relax