Respuesta :
Answer:
[tex]m=-\frac{7600}{8250}=-0.921[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{550}{10}=55[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{1042}{10}=104.2[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=104.2-(-0.921*55)=104.707[/tex]
So the line would be given by:
[tex]y=-0.921 x +104.707[/tex]
Step-by-step explanation:
For this case we have the following data given:
Demand (x): 10,20,30,40,50,60,70,80,90,100
Price (y): 141 , 133,126, 128,113,97, 90, 82,79,53
We want to construct a linear model like this:
[tex] y = mx +b[/tex]
For this case we need to calculate the slope with the following formula:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =550[/tex]
[tex]\sum_{i=1}^n y_i =1042[/tex]
[tex]\sum_{i=1}^n x^2_i =38500[/tex]
[tex]\sum_{i=1}^n y^2_i =115882[/tex]
[tex]\sum_{i=1}^n x_i y_i =49710[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=38500-\frac{550^2}{10}=8250[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=49710-\frac{550*1042}{10}=-7600[/tex]
And the slope would be:
[tex]m=-\frac{7600}{8250}=-0.921[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{550}{10}=55[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{1042}{10}=104.2[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=104.2-(-0.921*55)=104.707[/tex]
So the line would be given by:
[tex]p(x)=-0.921 x +104.707[/tex]
