Respuesta :
Answer:
Vā = 4.0L
Explanation:
Decreasing temperature => Decreasing Volume (Charles Law)
For a given volume, use a temperature ratio that will give a smaller volume.
Volume at lower temp = 4.6L(70K/82K) = 4.0L ... Using (82K/70K) would give a larger volume => contrary to temperature effects on gas volumes when pressure and mass are kept constant.
Pressure effects on Gas Volumes:
Note: The same idea is applied to pressure effects on gas volumes also except that changes in pressure affect gas volumes indirectly. That is, an increase in pressure => decrease in volume, or a decrease in pressure => increase in volume. Boyles Law => V ā 1/P.
Given a gas volume of 4.60L at 760mmHg, what is volume at 848mmHg?
Increasing pressure => Decreases Volume (Boyles Law)
For the given volume use a pressure ratio that will give a smaller volume.
Volume at higher pressure = 4.6L(760mm/848mm) =4.1L. Using (848mm/760mm) would give a larger volume => contrary to pressure effects on gas volume when temperature and mass of gas are kept constant.